1
|
Jiang F, Hirano T, Liang C, Zhang G, Matsunaga K, Chen X. Multi-scale simulations of pulmonary airflow based on a coupled 3D-1D-0D model. Comput Biol Med 2024; 171:108150. [PMID: 38367450 DOI: 10.1016/j.compbiomed.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Pulmonary airflow simulation is a valuable tool for studying respiratory function and disease. However, the respiratory system is a complex multiscale system that involves various physical and biological processes across different spatial and temporal scales. In this study, we propose a 3D-1D-0D multiscale method for simulating pulmonary airflow, which integrates different levels of detail and complexity of the respiratory system. The method consists of three components: a 3D computational fluid dynamics model for the airflow in the trachea and bronchus, a 1D pipe model for the airflow in the terminal bronchioles, and a 0D biphasic mixture model for the airflow in the respiratory bronchioles and alveoli coupled with the lung deformation. The coupling between the different components is achieved by satisfying the mass and momentum conservation law and the pressure continuity condition at the interfaces. We demonstrate the validity and applicability of our method by comparing the results with data of previous models. We also investigate the reduction in inhaled air volume due to the pulmonary fibrosis using the developed multiscale model. Our method provides a comprehensive and realistic framework for simulating pulmonary airflow and can potentially facilitate the diagnosis and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai, Ube, 7558611, Yamaguchi, Japan; Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 7558611, Yamaguchi, Japan.
| | - Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Minamikogushi, Ube, 7558505, Yamaguchi, Japan
| | - Chenyang Liang
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai, Ube, 7558611, Yamaguchi, Japan
| | - Guangzhi Zhang
- Keisoku Engineering System Co., Ltd., Uchikanda, Chiyoda-ku, Tokyo, 1010047, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Minamikogushi, Ube, 7558505, Yamaguchi, Japan
| | - Xian Chen
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai, Ube, 7558611, Yamaguchi, Japan; Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 7558611, Yamaguchi, Japan
| |
Collapse
|
2
|
Ebrahimi BS, Khwaounjoo P, Argus F, Chan HF, Nash MP, McGiffin D, Kaye D, Doi A, Joseph T, Whitford H, Tawhai MH. Predicting Patient Status in Chronic Thromboembolic Pulmonary Hypertension Using a Biophysical Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083065 DOI: 10.1109/embc40787.2023.10340433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) involves abnormally high blood pressure in the pulmonary vessels and is associated with small vessel vasculopathy and pre-capillary proximal occlusions. Management of CTEPH disease is challenging, therefore accurate diagnosis is crucial in ensuring effective treatment and improved patient outcomes. The treatment of choice for CTEPH is pulmonary endarterectomy, which is an invasive surgical intervention to remove thrombi. Following PEA, a number of patients experience poor outcomes or worse-than-expected improvements, which may indicate that they have significant small vessel disease. A method that can predict the extent of distal remodelling may provide useful clinical information to plan appropriate CTEPH patient treatment. Here, a novel biophysical modelling approach has been developed to estimate and quantify the extent of distal remodelling. This method includes a combination of mathematical modelling and computed tomography pulmonary angiography to first model the geometry of the pulmonary arteries and to identify the under-perfused regions in CTEPH. The geometric model is then used alongside haemodynamic measurements from right heart catheterisation to predict distal remodelling. In this study, the method is tested and validated using synthetically generated remodelling data. Then, a preliminary application of this technique to patient data is shown to demonstrate the potential of the approach for use in the clinical setting.Clinical relevance- Patient-specific modelling can help provide useful information regarding the extent of distal vasculopathy on a per-patient basis, which remains challenging. Physicians can be unsure of outcomes following pulmonary endarterectomy. Therefore, the predictive aspect of the patient's response to surgery can help with clinical decision-making.
Collapse
|