1
|
Guranda A, Richter A, Wach J, Güresir E, Vychopen M. KEPPRA: Key Epilepsy Prognostic Parameters with Radiomics in Acute Subdural Hematoma Before Craniotomy. Brain Sci 2025; 15:204. [PMID: 40002536 PMCID: PMC11852438 DOI: 10.3390/brainsci15020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Acute subdural hematoma (aSDH) is associated with a high risk of epilepsy, a complication linked to poor outcomes. Craniotomy is a known risk factor, with an epilepsy incidence of approximately 25%. This study evaluated radiomic features from preoperative CT scans to predict epilepsy risk in aSDH patients undergoing craniotomy. METHODS A retrospective analysis of 178 adult aSDH patients treated between 2016 and 2022 identified 64 patients meeting inclusion criteria. Radiomic features (e.g., Feret diameter, elongation, flatness, surface area, and volume) from preoperative CT scans within 24 h of surgery were analyzed alongside clinical factors, including cardiac comorbidities, pupillary response, SOFA score, age, and anticoagulation status. RESULTS Of the 64 patients, 18 (28%) developed generalized seizures. Univariate analysis showed significant associations with Feret diameter (p = 0.045), elongation (p = 0.005), cardiac comorbidities (p = 0.017), and SOFA score (p = 0.036). ROC analysis showed excellent discriminatory ability for elongation (AUC = 0.82). Multivariate analysis identified elongation as an independent predictor (p = 0.003); elongation ≥ 1.45 increased seizure risk 7.78-fold (OR = 7.778; 95% CI = 1.969-30.723). CONCLUSIONS Radiomic features, particularly elongation, may help predict epilepsy risk in aSDH patients undergoing craniotomy. Prospective validation is needed.
Collapse
Affiliation(s)
- Alexandru Guranda
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany; (A.R.); (J.W.); (E.G.); (M.V.)
| | | | | | | | | |
Collapse
|
2
|
Garcia JP, Armbruster M, Sommer M, Nunez-Beringer A, Dulla CG. Glutamate uptake is transiently compromised in the perilesional cortex following controlled cortical impact. Cereb Cortex 2025; 35:bhaf031. [PMID: 40007051 DOI: 10.1093/cercor/bhaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/03/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), is regulated by the excitatory amino acid transporters glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Following traumatic brain injury, extracellular glutamate levels increase, contributing to excitotoxicity, circuit dysfunction, and morbidity. Increased neuronal glutamate release and compromised astrocyte-mediated uptake contribute to elevated glutamate, but the mechanistic and spatiotemporal underpinnings of these changes are not well established. Using the controlled cortical impact model of TBI and iGluSnFR glutamate imaging, we quantified extracellular glutamate dynamics after injury. Three days postinjury, glutamate release was increased, and glutamate uptake and GLT-1 expression were reduced. Seven and 14 days postinjury, glutamate dynamics were comparable between sham and controlled cortical impact animals. Changes in peak glutamate response were unique to specific cortical layers and proximity to injury. This was likely driven by increases in glutamate release, which was spatially heterogeneous, rather than reduced uptake, which was spatially uniform. The astrocyte K+ channel, Kir4.1, regulates activity-dependent slowing of glutamate uptake. Surprisingly, Kir4.1 was unchanged after controlled cortical impact and accordingly, activity-dependent slowing of glutamate uptake was unaltered. This dynamic glutamate dysregulation after traumatic brain injury underscores a brief period in which disrupted glutamate uptake may contribute to dysfunction and highlights a potential therapeutic window to restore glutamate homeostasis.
Collapse
Affiliation(s)
- Jacqueline P Garcia
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Cellular, Molecular, and Developmental Biology Program, Tufts University School of Medicine, Boston, MA, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Aliana Nunez-Beringer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Aleem M, Verma P, Manda K. Conceptualization and standardization of a non-invasive closed head injury model using directed shockwave to mice. Exp Neurol 2025; 384:115051. [PMID: 39536962 DOI: 10.1016/j.expneurol.2024.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with closed head injury (CHI) being one of the most common forms of TBI. Preclinical modeling of TBI is challenging due to confounding factors like craniectomy and poorly controlled injury severity. This study proposes a non-invasive CHI model using directed shockwaves. The mice heads were exposed to the shockwave and accommodated together following the implantation of RFID tags for automated neurocognitive assessment. Following a 13-days paradigm, mice underwent a digital gait analysis and subsequent classical behavioral test paradigms for affective, cognitive, and locomotor functions. Qualitative and quantitative histopathological assessment was carried out for shockwave pulses-dependent changes in terms of lesion volume, neuronal death, dendritic complexity, and spine density. Studies showed shockwave pulses-dependent differences in survivability, righting reflex, neural damage, and death. Shockwave-exposed mice showed significantly impaired learning and cognitive flexibility. Interestingly, exposed mice showed locomotor hyperactivity and risk-taking behavior (lack of anxiety) along with depression-like phenotypes. Our result suggests that the shockwave-based CHI models result in the clinically relevant phenotype and are precisely controlled for reproducibility.
Collapse
Affiliation(s)
- Mohd Aleem
- Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India
| | - Princy Verma
- Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India
| | - Kailash Manda
- Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India.
| |
Collapse
|
4
|
Alves M, de Diego-Garcia L, Vegliante G, Moreno O, Gil B, Ramos-Cabrer P, Mitra M, Martin AF, Menéndez-Méndez A, Wang Y, Strogulski NR, Sun MJ, Melia C, Conte G, Plaza-García S, Khalin I, Teng X, Plesnila N, Klebl B, Dinkel K, Hamacher M, Bhattacharya A, Ceusters M, Palmer J, Loane DJ, Llop J, Henshall DC, Engel T. P2X7R antagonism suppresses long-lasting brain hyperexcitability following traumatic brain injury in mice. Theranostics 2025; 15:1399-1419. [PMID: 39886340 PMCID: PMC11780721 DOI: 10.7150/thno.97254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 02/01/2025] Open
Abstract
Purpose: Post-traumatic epilepsy (PTE) is one of the most common life-quality reducing consequences of traumatic brain injury (TBI). However, to date there are no pharmacological approaches to predict or to prevent the development of PTE. The P2X7 receptor (P2X7R) is a cationic ATP-dependent membrane channel that is expressed throughout the brain. While increasing evidence suggests a role for the P2X7R during seizures and epilepsy, it is unclear if changes in P2X7R expression can predict TBI-induced epilepsy development, and whether P2X7R antagonism can protect against long-lasting brain hyperexcitability caused by TBI. Methods: TBI was induced in adult male mice using the controlled cortical impact model (CCI). To test the anti-epileptogenic effects of P2X7R antagonism, mice were treated with brain-penetrant P2X7R antagonists JNJ-54175446 (30 mg/kg) or AFC-5128 (30 mg/kg) for 7 days post-CCI. The cell-type specific effects of P2X7Rs on TBI-induced hyperexcitability were analyzed in mice lacking exon 2 of the P2rx7 gene selectively in microglia (P2rx7:Cx3cr1-Cre). Static positron emission tomography (PET) via an intravenous injection of the P2X7R radioligand 18F-JNJ-64413739 and magnetic resonance imaging (MRI) were conducted twice during the first- and third-week post-injury. Results: Following TBI, while there were no obvious changes in P2X7R protein levels in the ipsilateral hippocampus post-injury, there was a delayed increase in P2X7R protein levels in the ipsilateral cortex at 3 months post-injury. Treatment with P2X7R antagonists shortly after TBI reduced long-lasting brain hyperexcitability, reduced cortical contusion volume, and normalized injury-induced hyperactivity to control sham-levels at 3 weeks post-TBI. Notably, mice lacking P2rx7 in microglia had an increased seizure threshold after TBI, suggesting that P2X7R contributed to brain hyperexcitability via its effects on microglia. Finally, P2X7R radioligand uptake after TBI correlated with seizure threshold at 3 weeks post-injury. Conclusions: Our results demonstrate the antiepileptogenic potential of P2X7R antagonism to prevent TBI-induced epilepsy and indicate that P2X7R-based PET imaging may be a useful diagnostic tool to identify people at risk of developing PTE.
Collapse
MESH Headings
- Animals
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/physiopathology
- Brain Injuries, Traumatic/metabolism
- Mice
- Male
- Receptors, Purinergic P2X7/metabolism
- Receptors, Purinergic P2X7/genetics
- Purinergic P2X Receptor Antagonists/pharmacology
- Disease Models, Animal
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Epilepsy, Post-Traumatic/prevention & control
- Epilepsy, Post-Traumatic/drug therapy
- Epilepsy, Post-Traumatic/etiology
- Mice, Inbred C57BL
- Seizures/drug therapy
- Positron-Emission Tomography
- Microglia/metabolism
- Microglia/drug effects
- Pyridines
- Tetrazoles
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- Department of Optometry, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Avda. Arcos de Jalon 118, 28040 Madrid, Spain
| | - Gloria Vegliante
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Oscar Moreno
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
| | - Beatriz Gil
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Meghma Mitra
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ana Fernandez Martin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Aida Menéndez-Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- Department of Medicine, Faculty of Biomedical Sciences and Health, Universidad Europea de Madrid, C. Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Yitao Wang
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Meng-Juan Sun
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ciara Melia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Bert Klebl
- KHAN Technology Transfer Fund I GmbH & Co. KG, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Klaus Dinkel
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Michael Hamacher
- Affectis Pharmaceuticals AG, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | | | - Marc Ceusters
- Janssen Pharmaceutica NV, Beerse, Belgium
- The Marc Ceusters Company, BV, Diest, Belgium
| | - James Palmer
- Janssen Research and Development LLC, San Diego, California, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Jordi Llop
- CIC biomaGUNE, Basque research and Technology Alliance (BRTA), P° Miramon 182, 20014 San Sebastian, Gipuzkoa, Spain
| | - David C. Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
5
|
Fang Z, Shen G, Lou C, Botchway BO, Lu Q, Yang Q, Amin N. Neuroprotective effect of triptolide on neuronal inflammation in rats with mild brain injury. IBRO Neurosci Rep 2024; 17:13-21. [PMID: 38872838 PMCID: PMC11170352 DOI: 10.1016/j.ibneur.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Concussions sustained while playing sports are a prominent cause of mild traumatic brain injury (mTBI), which is prevalent among teenagers. The early and intermediate stages of mild traumatic brain injury (mTBI) can be characterized by inflammation, neurodegeneration, and brain tissue edema, which can lead to permanent brain damage. The present study investigated the therapeutic effects of triptolide in mTBI and brain damage recovery. After building mTBI model in male rat, triptolide administrated daily for 1 week in the treated group. On day 3 and day 7 of administration, hippocampus tissues were collected to evaluate inflammation and autophagy in the brain. The expressions of inflammatory factors interleukin (IL)-1β and tumor necrosis factor-alpha in serum were downregulated, while IL-10 expression was upregulated when compared with the mTBI group on day 3 and day 7. The expression of IL-10 on day 7 was higher than on day 3. Quantitative polymerase chain reaction (qPCR) analysis of inflammatory-related factors (i.e., Il-1β and nuclear factor-κB (Nf-κb), and western blot as well as immunofluorescence staining of autophagy-related proteins (i.e., LC3B) and aquaporin (AQP 4) showed lower expression on day 3 and day 7 in the triptolide-treated group. Moreover, NeuN immunostaining, and hematoxylin and eosin (HE) staining for hippocampus region revealed that the triptolide-treated group showed a decrease in damaged cells. Our findings emphasize the effectiveness of triptolide therapy after mild traumatic brain injury via modulating autophagy, attenuating inflammation and reduces edema by decreasing AQP 4 expression.
Collapse
Affiliation(s)
- Zhanglu Fang
- Department of Orthopaedics, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Guanghong Shen
- Jinhua Maternal and Child Health Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chengjian Lou
- Department of Neurosurgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Benson O.A. Botchway
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qinglin Lu
- Department of Orthopaedics, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Qining Yang
- Department of Orthopaedics, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Nashwa Amin
- The Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Egypt
| |
Collapse
|
6
|
Smith AM, Ray TJ, Hulitt AA, Vita SM, Warrington JP, Santos CDSE, Grayson BE. High-fat diet consumption negatively influences closed-head traumatic brain injury in a pediatric rodent model. Exp Neurol 2024; 379:114888. [PMID: 39009176 DOI: 10.1016/j.expneurol.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, p(injury) < 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, p(injury) < 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, p < 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Trenton J Ray
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Alicia A Hulitt
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Sydney M Vita
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70116, United States of America.
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | | | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
7
|
Gober IG, Russell AL, Shick TJ, Vagni VA, Carlson JC, Kochanek PM, Wagner AK. Exploratory assessment of the effect of systemic administration of soluble glycoprotein 130 on cognitive performance and chemokine levels in a mouse model of experimental traumatic brain injury. J Neuroinflammation 2024; 21:149. [PMID: 38840141 PMCID: PMC11155101 DOI: 10.1186/s12974-024-03129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1β, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.
Collapse
Affiliation(s)
- Ian G Gober
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ashley L Russell
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Tyler J Shick
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenna C Carlson
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA.
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA.
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
9
|
Ritzel RM, Li Y, Jiao Y, Doran SJ, Khan N, Henry RJ, Brunner K, Loane DJ, Faden AI, Szeto GL, Wu J. Bi-directional neuro-immune dysfunction after chronic experimental brain injury. J Neuroinflammation 2024; 21:83. [PMID: 38581043 PMCID: PMC10996305 DOI: 10.1186/s12974-024-03082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Yun Li
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Jiao
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Sarah J Doran
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kavitha Brunner
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gregory L Szeto
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
11
|
Shaked I, Foo C, Mächler P, Liu R, Cui Y, Ji X, Broggini T, Kaminski T, Suryakant Jadhav S, Sundd P, Firer M, Devor A, Friedman B, Kleinfeld D. A lone spike in blood glucose can enhance the thrombo-inflammatory response in cortical venules. J Cereb Blood Flow Metab 2024; 44:252-271. [PMID: 37737093 PMCID: PMC10993879 DOI: 10.1177/0271678x231203023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.
Collapse
Affiliation(s)
- Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Conrad Foo
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Philipp Mächler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Rui Liu
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Yingying Cui
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Thomas Broggini
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tomasz Kaminski
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Prithu Sundd
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Firer
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Beth Friedman
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Rodríguez JA, Gutiérrez MI, Vera A, Hernández DA, Gutiérrez JM, Martínez-Fong D, Leija L. Protocol to Induce the Temporary Opening of the Blood-Brain Barrier with Short-Time Focused Ultrasound in Rats. Pharmaceutics 2023; 15:2733. [PMID: 38140074 PMCID: PMC10748005 DOI: 10.3390/pharmaceutics15122733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Brain neurodegenerative diseases are central nervous system (CNS) affections typically common in older adults. A new therapeutic approach for them consists of providing specific drugs to the CNS through blood circulation; however, the Blood-Brain Barrier (BBB) prevents almost 100% of neurotherapeutics from reaching the brain. There are indications that Focused Ultrasound (FUS), temporarily placed in the BBB, can achieve a controlled increase in temperature at its focus, allowing temporary, localized, and reversible opening of this barrier, which facilitates the temporary delivery of specific drugs. This work presents a FUS-based protocol for the local, temporary, and reversible opening of the BBB in Wistar rats. The proposed protocol specifies certain power, treatment times, and duty cycle to controllably increase the temperature at the region of interest, i.e., the substantia nigra. Numerical simulations using commercial software based on the finite element method were carried out to determine the optimal size of the craniotomies for nearly full-acoustic transmission. Experiments in rats were performed with the parameters used during computational simulations to determine the adequate opening of the BBB. For this, craniotomies of different sizes were made at coordinates of the substantia nigra, and FUS was applied from the exterior. The opening of the BBB was evaluated using Evans Blue (EB) as an indicator of the crossing of the dye from the blood vessels to brain tissue. Numerical simulations demonstrated a major distance reached by the ultrasound focus with a bigger diameter. Experimental results show the local, temporary, and reversible opening of the BBB through a 10 mm diameter craniotomy, which effectively allowed placing the ultrasound focus over the substantia nigra, unlike a 6 mm diameter craniotomy in which there is a deviation of the focus through that window. Moreover, from these results, it was also determined that the disruption of the BBB was reversible, with an opening duration of 6 h after FUS application. The experimental work developed in this study resulted in a minimally invasive method for the temporary opening of the BBB.
Collapse
Affiliation(s)
- Jorge A. Rodríguez
- Bioelectronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.A.R.); (D.A.H.); (J.M.G.); (L.L.)
| | - Mario I. Gutiérrez
- Subdirección de Investigación Tecnológica, Consejo Nacional de Humanidades, Ciencias y Tecnologías-Instituto Nacional de Rehabilitación LGII, División de Investigación en Ingeniería Médica, Mexico City 14389, Mexico;
| | - Arturo Vera
- Bioelectronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.A.R.); (D.A.H.); (J.M.G.); (L.L.)
| | - Daniel A. Hernández
- Bioelectronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.A.R.); (D.A.H.); (J.M.G.); (L.L.)
| | - Juan M. Gutiérrez
- Bioelectronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.A.R.); (D.A.H.); (J.M.G.); (L.L.)
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Programa de Nanociencias y Nanotecnología, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Lorenzo Leija
- Bioelectronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.A.R.); (D.A.H.); (J.M.G.); (L.L.)
| |
Collapse
|
13
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M. Interleukin 4 Reduces Brain Hyperexcitability after Traumatic Injury by Downregulating TNF-α, Upregulating IL-10/TGF-β, and Potential Directing Macrophage/Microglia to the M2 Anti-inflammatory Phenotype. Inflammation 2023; 46:1810-1831. [PMID: 37259014 DOI: 10.1007/s10753-023-01843-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Macrophage/microglia are activated after Traumatic brain injury (TBI), transform to inflammatory phenotype (M1) and trigger neuroinflammation, which provokes epileptogenesis. Interleukin-4 (IL-4) is a well-known drive of macrophage/microglia to the anti-inflammatory phenotype (M2). We tested effect of IL-4 on speed of epileptogenesis, brain expression of inflammatory and anti-inflammatory cytokines, and lesion size in TBI-injured male rats. Rats underwent TBI by Controlled Cortical Impact. Then 100 ng IL-4 was injected into cerebral ventricles. One day after TBI, pentylenetetrazole (PTZ) kindling started and development of generalized seizures was recorded. The lesion size, cell survival rate, TNF-α, TGF-β, IL-10, and Arginase1 (Arg1) was measured in the brain 6 h, 12 h, 24 h, 48 h, and 5 days after TBI. Astrocytes and macrophage/microglia activation/polarization was assessed by GFAP/Arg1 and Iba1/Arg1 immunostaining. TBI-injured rats were kindled by 50% less PTZ injections than control and sham-operated rats. IL-4 did not change kindling rate in sham-operated rats but inhibited acceleration of kindling rate in the TBI-injured rats. IL-4 decreased damage volume and number of destroyed neurons. IL-4 stopped TNF-α whereas upregulated TGF-β, IL-10, and Arg1 expressions. Iba1/Arg1 positive macrophage/microglia was notably increased 48 h after IL-4 administration. IL-4 suppresses TBI-induced acceleration of epileptogenesis in rats by directing TBI neuroinflammation toward an anti-inflammatory tone and inhibition of cell death.
Collapse
Affiliation(s)
- Mozhdeh Radpour
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran
| | - Bahar Khoshkroodian
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran
| | - Tara Asgari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran , Tehran, Iran.
| |
Collapse
|
15
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
16
|
Babb JA, Zuberer A, Heinrichs S, Rumbika KK, Alfiler L, Lakis GA, Leite-Morris KA, Kaplan GB. Disturbances in fear extinction learning after mild traumatic brain injury in mice are accompanied by alterations in dendritic plasticity in the medial prefrontal cortex and basolateral nucleus of the amygdala. Brain Res Bull 2023; 198:15-26. [PMID: 37031792 DOI: 10.1016/j.brainresbull.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) have emerged as the signature injuries of the U.S. veterans who served in Iraq and Afghanistan, and frequently co-occur in both military and civilian and populations. To better understand how fear learning and underlying neural systems might be altered after mTBI we examined the acquisition of cued fear conditioning and its extinction along with brain morphology and dendritic plasticity in a mouse model of mTBI. To induce mTBI in adult male C57BL/6J mice, a lateral fluid percussive injury (LFP 1.7) was produced using a fluid pulse of 1.7 atmosphere force to the right parietal lobe. Behavior in LFP 1.7 mice was compared to behavior in mice from two separate control groups: mice subjected to craniotomy without LFP injury (Sham) and mice that did not undergo surgery (Unoperated). Following behavioral testing, neural endpoints (dendritic structural plasticity and neuronal volume) were assessed in the basolateral nucleus of the amygdala (BLA), which plays a critical sensory role in fear learning, and medial prefrontal cortex (mPFC), responsible for executive functions and inhibition of fear behaviors. No gross motor abnormalities or increased anxiety-like behaviors were observed in LFP or Sham mice after surgery compared to Unoperated mice. We found that all mice acquired fear behavior, assessed as conditioned freezing to auditory cue in a single session of 6 trials, and acquisition was similar across treatment groups. Using a linear mixed effects analysis, we showed that fear behavior decreased overall over 6 days of extinction training with no effect of treatment group across extinction days. However, a significant interaction was demonstrated between the treatment groups during within-session freezing behavior (5 trials per day) during extinction training. Specifically, freezing behavior increased across within-session extinction trials in LFP 1.7 mice, whereas freezing behavior in control groups did not change on extinction test days, reflecting a dissociation between within-trial and between-trial fear extinction. Additionally, LFP mice demonstrated bilateral increases in dendritic spine density in the BLA and decreases in dendritic complexity in the PFC. The translational implications are that individuals with TBI undergoing fear extinction therapy may demonstrate within-session aberrant learning that could be targeted for more effective treatment interventions.
Collapse
Affiliation(s)
- Jessica A Babb
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02115 USA.
| | - Agnieszka Zuberer
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany.
| | - Stephen Heinrichs
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Kendra K Rumbika
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Lauren Alfiler
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02218 USA.
| | - Kimberly A Leite-Morris
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA.
| | - Gary B Kaplan
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology & Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA.
| |
Collapse
|
17
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Volobueva MN, Suleymanova EM, Smirnova MP, Bolshakov AP, Vinogradova LV. A Single Episode of Cortical Spreading Depolarization Increases mRNA Levels of Proinflammatory Cytokines, Calcitonin Gene-Related Peptide and Pannexin-1 Channels in the Cerebral Cortex. Int J Mol Sci 2022; 24:ijms24010085. [PMID: 36613527 PMCID: PMC9820231 DOI: 10.3390/ijms24010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cortical spreading depolarization (CSD) is the neuronal correlate of migraine aura and the reliable consequence of acute brain injury. The role of CSD in triggering headaches that follow migraine aura and brain injury remains to be uncertain. We examined whether a single CSD occurring in awake animals modified the expression of proinflammatory cytokines (Il1b, TNF, and Il6) and endogenous mediators of nociception/neuroinflammation-pannexin 1 (Panx1) channel and calcitonin gene-related peptide (CGRP), transforming growth factor beta (TGFb) in the cortex. Unilateral microinjury of the somatosensory cortex triggering a single CSD was produced in awake Wistar rats. Three hours later, tissue samples from the lesioned cortex, intact ipsilesional cortex invaded by CSD, and homologous areas of the contralateral sham-treated cortex were harvested and analyzed using qPCR. Three hours post-injury, intact CSD-exposed cortexes increased TNF, Il1b, Panx1, and CGRP mRNA levels. The strongest upregulation of proinflammatory cytokines was observed at the injury site, while CGRP and Panx1 were upregulated more strongly in the intact cortexes invaded by CSD. A single CSD is sufficient to produce low-grade parenchymal neuroinflammation with simultaneous overexpression of Panx1 and CGRP. The CSD-induced molecular changes may contribute to pathogenic mechanisms of migraine pain and post-injury headache.
Collapse
Affiliation(s)
- Maria N. Volobueva
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Elena M. Suleymanova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Maria P. Smirnova
- Department of Conditioned Reflexes and Physiology of Emotion, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Alexey P. Bolshakov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Lyudmila V. Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
- Correspondence: or
| |
Collapse
|
19
|
nikbakht A, kargar_soleimanabad S, Siahposht-Khachaki A, Farzin D. The effect of Riluzole on neurological outcomes, blood-brain barrier, brain water and neuroinflammation in traumatic brain injury. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Clay AM, Carr R, Dubien J, To F. Short-term behavioral and histological changes in a rodent model of mild traumatic brain injury. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Virenque A, Koivisto H, Antila S, Zub E, Rooney EJ, Miszczuk D, Müller A, Stoka E, Marchi N, Alitalo K, Tanila H, Noe FM. Significance of developmental meningeal lymphatic dysfunction in experimental post-traumatic injury. Brain Behav Immun Health 2022; 23:100466. [PMID: 35694175 PMCID: PMC9184565 DOI: 10.1016/j.bbih.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding the pathological mechanisms unfolding after chronic traumatic brain injury (TBI) could reveal new therapeutic entry points. During the post-TBI sequel, the involvement of cerebrospinal fluid drainage through the meningeal lymphatic vessels was proposed. Here, we used K14-VEGFR3-Ig transgenic mice to analyze whether a developmental dysfunction of meningeal lymphatic vessels modifies post-TBI pathology. To this end, a moderate TBI was delivered by controlled cortical injury over the temporal lobe in male transgenic mice or their littermate controls. We performed MRI and a battery of behavioral tests over time to define the post-TBI trajectories. In vivo analyses were integrated by ex-vivo quantitative and morphometric examinations of the cortical lesion and glial cells. In post-TBI K14-VEGFR3-Ig mice, the recovery from motor deficits was protracted compared to littermates. This outcome is coherent with the observed slower hematoma clearance in transgenic mice during the first two weeks post-TBI. No other genotype-related behavioral differences were observed, and the volume of cortical lesions imaged by MRI in vivo, and confirmed by histology ex-vivo, were comparable in both groups. However, at the cellular level, post-TBI K14-VEGFR3-Ig mice exhibited an increased percentage of activated Iba1 microglia in the hippocampus and auditory cortex, areas that are proximal to the lesion. Although not impacting or modifying the structural brain damage and post-TBI behavior, a pre-existing dysfunction of meningeal lymphatic vessels is associated with morphological microglial activation over time, possibly representing a sub-clinical pathological imprint or a vulnerability factor. Our findings suggest that pre-existing mLV deficits could represent a possible risk factor for the overall outcome of TBI pathology.
Developmental deficit in the meningeal lymphatic vessels contributes to sustain the chronic neuroinflammation and represent a susceptibility factor in TBI, despite the lack of a functional phenotype. Development and progression of TBI-related cortical lesion is not exacerbated by developmental deficit in meningeal lymphatics. Meningeal lymphatic developmental deficits result in increased neuroinflammation, suggesting a sub-clinical pathological imprint or a vulnerability factor. Congenital mLV deficit affects the interstitial fluid dynamics and the post-TBI hematoma resolution.
Collapse
Affiliation(s)
- Anaïs Virenque
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Emma Zub
- Cerebrovascular and Glia Research, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Erin Jane Rooney
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Diana Miszczuk
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Adrian Müller
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Enija Stoka
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Francesco Mattia Noe
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Corresponding author. HiLIFE, Neuroscience Center, Helsinki University, Helsinki, Finland.
| |
Collapse
|
23
|
Zheng RZ, Lee KY, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not. Front Immunol 2022; 13:855701. [PMID: 35392083 PMCID: PMC8981520 DOI: 10.3389/fimmu.2022.855701] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with high mortality and disability, with a substantial socioeconomic burden. With the standardization of the treatment process, there is increasing interest in the role that the secondary insult of TBI plays in outcome heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute sense, among which the inflammatory response was a complex cascade of events and can thus be regarded as a double-edged sword. Therefore, clinicians should take the generation and balance of neuroinflammation following TBI seriously. In this review, we summarize the current human and animal model studies of neuroinflammation and provide a better understanding of the inflammatory response in the different stages of TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic techniques have enabled us to identify a functional specific delineation of the immune cell in TBI patients. Based on recent advances in our understanding of immune cell activation, we present the difference between diffuse axonal injury and focal brain injury. In addition, we give a figurative profiling of the general paradigm in the pre- and post-injury inflammatory settings employing a bow-tie framework.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kuin-Yu Lee
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Zheng X, Mi T, Wang R, Zhang Z, Li W, Zhao J, Yang P, Xia H, Mao Q. Progranulin deficiency promotes persistent neuroinflammation and causes regional pathology in the hippocampus following traumatic brain injury. Glia 2022; 70:1317-1336. [PMID: 35362178 DOI: 10.1002/glia.24175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/07/2022]
Abstract
Traumatic brain injury (TBI) can be progressive and can lead to the development of a long-term complication termed chronic traumatic encephalopathy. The mechanisms underlying the progressive changes are still unknown; however, studies have suggested that microglia-mediated neuroinflammation in response to TBI may play a fundamental role. This study aimed to determine whether progranulin (PGRN), a major modulator of microglial activity, plays a role in the progressive damage following TBI. PGRN-deficient and wild-type mice were subjected to controlled cortical impact and were observed neuropathologically after 3 days, 7 days, and 5 months. Compared to sham and wild-type mice, the PGRN-deficient mice showed overall stronger microgliosis and astrocytosis. The astrocytosis involved broader areas than the microgliosis and was more prominent in the basal ganglia, hippocampus, and internal capsule in PGRN-deficient mice. Ongoing neuronal death was uniquely observed in the hippocampal CA3 region of PGRN-deficient mice at 5 months after TBI, accompanying the regional chronic microgliosis and astrocytosis involving the CA3 commissural pathway. In addition, there was M1 microglial polarization in the pericontusional area with activated TLR4/MyD88/NF-κB signaling; however, the hippocampus showed only mild M1 polarization 7 days after TBI. Lastly, Morris water maze tests showed PGRN-deficient mice had poorer spatial learning and memory 5 months after TBI than wild-type or sham mice. The data indicated the PGRN deficiency caused TBI progression by promoting persistent microgliosis with microglial polarization and astrocytosis, as well as regional pathology in the hippocampus. The study suggests that PGRN should be evaluated as a potential therapy for TBI.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Tiantian Mi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rong Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zihan Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenyan Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
Fritsch LE, Ju J, Gudenschwager Basso EK, Soliman E, Paul S, Chen J, Kaloss AM, Kowalski EA, Tuhy TC, Somaiya RD, Wang X, Allen IC, Theus MH, Pickrell AM. Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury. Front Mol Neurosci 2022; 15:852243. [PMID: 35283725 PMCID: PMC8916033 DOI: 10.3389/fnmol.2022.852243] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jing Ju
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jiang Chen
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Taylor C. Tuhy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rachana Deven Somaiya
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
26
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
27
|
van Alphen B, Stewart S, Iwanaszko M, Xu F, Li K, Rozenfeld S, Ramakrishnan A, Itoh TQ, Sisobhan S, Qin Z, Lear BC, Allada R. Glial immune-related pathways mediate effects of closed head traumatic brain injury on behavior and lethality in Drosophila. PLoS Biol 2022; 20:e3001456. [PMID: 35081110 PMCID: PMC8791498 DOI: 10.1371/journal.pbio.3001456] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
In traumatic brain injury (TBI), the initial injury phase is followed by a secondary phase that contributes to neurodegeneration, yet the mechanisms leading to neuropathology in vivo remain to be elucidated. To address this question, we developed a Drosophila head-specific model for TBI termed Drosophila Closed Head Injury (dCHI), where well-controlled, nonpenetrating strikes are delivered to the head of unanesthetized flies. This assay recapitulates many TBI phenotypes, including increased mortality, impaired motor control, fragmented sleep, and increased neuronal cell death. TBI results in significant changes in the transcriptome, including up-regulation of genes encoding antimicrobial peptides (AMPs). To test the in vivo functional role of these changes, we examined TBI-dependent behavior and lethality in mutants of the master immune regulator NF-κB, important for AMP induction, and found that while sleep and motor function effects were reduced, lethality effects were enhanced. Similarly, loss of most AMP classes also renders flies susceptible to lethal TBI effects. These studies validate a new Drosophila TBI model and identify immune pathways as in vivo mediators of TBI effects.
Collapse
Affiliation(s)
- Bart van Alphen
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Samuel Stewart
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Marta Iwanaszko
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Preventive Medicine—Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Fangke Xu
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Keyin Li
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Sydney Rozenfeld
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Anujaianthi Ramakrishnan
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Taichi Q. Itoh
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Shiju Sisobhan
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Zuoheng Qin
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Bridget C. Lear
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
28
|
Komoltsev IG, Tret'yakova LV, Frankevich SO, Shirobokova NI, Volkova AA, Butuzov AV, Novikova MR, Kvichansky AA, Moiseeva YV, Onufriev MV, Bolshakov AP, Gulyaeva NV. Neuroinflammatory Cytokine Response, Neuronal Death, and Microglial Proliferation in the Hippocampus of Rats During the Early Period After Lateral Fluid Percussion-Induced Traumatic Injury of the Neocortex. Mol Neurobiol 2021; 59:1151-1167. [PMID: 34855115 DOI: 10.1007/s12035-021-02668-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
Time course of changes in neuroinflammatory processes in the dorsal and ventral hippocampus was studied during the early period after lateral fluid percussion-induced neocortical traumatic brain injury (TBI) in the ipsilateral and contralateral hemispheres. In the ipsilateral hippocampus, neuroinflammation (increase in expression of pro-inflammatory cytokines) was evident from day 1 after TBI and ceased by day 14, while in the contralateral hippocampus, it was mainly limited to the dorsal part on day 1. TBI induced an increase in hippocampal corticosterone level on day 3 bilaterally and an accumulation of Il1b on day 1 in the ipsilateral hippocampus. Activation of microglia was observed from day 7 in different hippocampal areas of both hemispheres. Neuronal cell loss was detected in the ipsilateral dentate gyrus on day 3 and extended to the contralateral hippocampus by day 7 after TBI. The data suggest that TBI results in distant hippocampal damage (delayed neurodegeneration in the dentate gyrus and microglia proliferation in both the ipsilateral and contralateral hippocampus), the time course of this damage being different from that of the neuroinflammatory response.
Collapse
Affiliation(s)
- Ilia G Komoltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419, Moscow, Russia
| | - Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Stepan O Frankevich
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419, Moscow, Russia
| | - Natalia I Shirobokova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Aleksandra A Volkova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Alexey V Butuzov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Margarita R Novikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419, Moscow, Russia
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Moscow, Russia. .,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419, Moscow, Russia.
| |
Collapse
|
29
|
Kyyriäinen J, Kajevu N, Bañuelos I, Lara L, Lipponen A, Balosso S, Hämäläinen E, Das Gupta S, Puhakka N, Natunen T, Ravizza T, Vezzani A, Hiltunen M, Pitkänen A. Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. Int J Mol Sci 2021; 22:10555. [PMID: 34638900 PMCID: PMC8508668 DOI: 10.3390/ijms221910555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to -29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.
Collapse
Affiliation(s)
- Jenni Kyyriäinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Leonardo Lara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701 Kuopio, Finland
| | - Silvia Balosso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (T.N.); (M.H.)
| | - Teresa Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (T.N.); (M.H.)
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| |
Collapse
|
30
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
31
|
Corne R, Besson V, Ait Si Slimane S, Coutan M, Palhas MLC, Shen FX, Marchand-Leroux C, Ogier M, Mongeau R. Insulin-like Growth Factors may be Markers of both Traumatic Brain Injury and Fear-Related Stress. Neuroscience 2021; 466:205-221. [PMID: 33895341 DOI: 10.1016/j.neuroscience.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Insulin-like growth factors (IGF) are potent neurotrophic and neurorepair factors that were recently proposed as biomarkers of traumatic brain injury (TBI) and associated psychiatric comorbidities, in particular post-traumatic stress disorder (PSTD). We tested the hypothesis that the IGF system is differentially deregulated in the acute and early chronic stages of TBI, and under acute stress. Plasma and brain IGF1 and IGF2 levels were evaluated in mice 3 weeks and 3 days after a controlled cortical impact (CCI)-induced mild-to-moderate TBI. The effects of conditioned fear on IGF levels and its interaction with TBI (TBI followed, 3 weeks later, by fear-inducing procedures) were also evaluated. In the plasma, IGF1 decreased 3 weeks post-TBI only (-9%), whereas IGF2 remained unaffected. In the brain, IGF1 increased only in the cortex and hippocampus at 3 weeks post-TBI (up to +650%). At 3 days, surpringly, this increase was more diffuse and more important in sham (craniotomized) animals. Additionally, IGF2 immunostaining in brain ventricles was reorganized in TBI animals at both post-TBI stages. Conditioned fear exposure did not influence the effects of early chronic TBI on plasma IGF1 levels, but reduced plasma IGF2 (-6%) levels. It also dampened the effects of TBI on brain IGF systems, but brain IGF1 level and IGF2 tissue distribution remained statistically different from controls under these conditions. In co-exposed animals, DNA methylation increased at the hippocampal Igf1 gene promoter. These results show that blood IGF1 and IGF2 are most reduced in the early chronic phase of TBI and after exposure to a stressful event, and that the brain IGF system is up-regulated after TBI, and more so in the acute phase.
Collapse
Affiliation(s)
- Rémi Corne
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Valérie Besson
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR_S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Sofiane Ait Si Slimane
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mathieu Coutan
- Institut de Recherche Biomédicale de Armées, 1 place du Général Valérie André, 91223 Brétigny sur Orge Cedex, France
| | - Marta L C Palhas
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Fang Xue Shen
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Catherine Marchand-Leroux
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR_S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Michaël Ogier
- Institut de Recherche Biomédicale de Armées, 1 place du Général Valérie André, 91223 Brétigny sur Orge Cedex, France
| | - Raymond Mongeau
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; CNRS ERL 3649 T3S-1124 - UMR-S 1124 - Addictions, Pharmacology and Therapy, Université Paris Descartes, 45, rue des Saint-Pères, 75006 Paris, France.
| |
Collapse
|
32
|
Attilio PJ, Snapper DM, Rusnak M, Isaac A, Soltis AR, Wilkerson MD, Dalgard CL, Symes AJ. Transcriptomic Analysis of Mouse Brain After Traumatic Brain Injury Reveals That the Angiotensin Receptor Blocker Candesartan Acts Through Novel Pathways. Front Neurosci 2021; 15:636259. [PMID: 33828448 PMCID: PMC8019829 DOI: 10.3389/fnins.2021.636259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) results in complex pathological reactions, where the initial lesion is followed by secondary inflammation and edema. Our laboratory and others have reported that angiotensin receptor blockers (ARBs) have efficacy in improving recovery from traumatic brain injury in mice. Treatment of mice with a subhypotensive dose of the ARB candesartan results in improved functional recovery, and reduced pathology (lesion volume, inflammation and gliosis). In order to gain a better understanding of the molecular mechanisms through which candesartan improves recovery after controlled cortical impact injury (CCI), we performed transcriptomic profiling on brain regions after injury and drug treatment. We examined RNA expression in the ipsilateral hippocampus, thalamus and hypothalamus at 3 or 29 days post injury (dpi) treated with either candesartan (0.1 mg/kg) or vehicle. RNA was isolated and analyzed by bulk mRNA-seq. Gene expression in injured and/or candesartan treated brain region was compared to that in sham vehicle treated mice in the same brain region to identify genes that were differentially expressed (DEGs) between groups. The most DEGs were expressed in the hippocampus at 3 dpi, and the number of DEGs reduced with distance and time from the lesion. Among pathways that were differentially expressed at 3 dpi after CCI, candesartan treatment altered genes involved in angiogenesis, interferon signaling, extracellular matrix regulation including integrins and chromosome maintenance and DNA replication. At 29 dpi, candesartan treatment reduced the expression of genes involved in the inflammatory response. Some changes in gene expression were confirmed in a separate cohort of animals by qPCR. Fewer DEGs were found in the thalamus, and only one in the hypothalamus at 3 dpi. Additionally, in the hippocampi of sham injured mice, 3 days of candesartan treatment led to the differential expression of 384 genes showing that candesartan in the absence of injury had a powerful impact on gene expression specifically in the hippocampus. Our results suggest that candesartan has broad actions in the brain after injury and affects different processes at acute and chronic times after injury. These data should assist in elucidating the beneficial effect of candesartan on recovery from TBI.
Collapse
Affiliation(s)
- Peter J. Attilio
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dustin M. Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Akira Isaac
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Anthony R. Soltis
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew D. Wilkerson
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Aviva J. Symes
- Graduate Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
33
|
Plasma miR-9-3p and miR-136-3p as Potential Novel Diagnostic Biomarkers for Experimental and Human Mild Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22041563. [PMID: 33557217 PMCID: PMC7913923 DOI: 10.3390/ijms22041563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Noninvasive, affordable circulating biomarkers for difficult-to-diagnose mild traumatic brain injury (mTBI) are an unmet medical need. Although blood microRNA (miRNA) levels are reportedly altered after traumatic brain injury (TBI), their diagnostic potential for mTBI remains inconclusive. We hypothesized that acutely altered plasma miRNAs could serve as diagnostic biomarkers both in the lateral fluid percussion injury (FPI) model and clinical mTBI. We performed plasma small RNA-sequencing from adult male Sprague-Dawley rats (n = 31) at 2 days post-TBI, followed by polymerase chain reaction (PCR)-based validation of selected candidates. miR-9a-3p, miR-136-3p, and miR-434-3p were identified as the most promising candidates at 2 days after lateral FPI. Digital droplet PCR (ddPCR) revealed 4.2-, 2.8-, and 4.6-fold elevations in miR-9a-3p, miR-136-3p, and miR-434-3p levels (p < 0.01 for all), respectively, distinguishing rats with mTBI from naïve rats with 100% sensitivity and specificity. DdPCR further identified a subpopulation of mTBI patients with plasma miR-9-3p (n = 7/15) and miR-136-3p (n = 5/15) levels higher than one standard deviation above the control mean at <2 days postinjury. In sTBI patients, plasma miR-9-3p levels were 6.5- and 9.2-fold in comparison to the mTBI and control groups, respectively. Thus, plasma miR-9-3p and miR-136-3p were identified as promising biomarker candidates for mTBI requiring further evaluation in a larger patient population.
Collapse
|
34
|
Hanscom M, Loane DJ, Aubretch T, Leser J, Molesworth K, Hedgekar N, Ritzel RM, Abulwerdi G, Shea-Donohue T, Faden AI. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J Neuroinflammation 2021; 18:24. [PMID: 33461596 PMCID: PMC7814749 DOI: 10.1186/s12974-020-02067-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Disruptions of brain-gut axis have been implicated in the progression of a variety of gastrointestinal (GI) disorders and central nervous system (CNS) diseases and injuries, including traumatic brain injury (TBI). TBI is a chronic disease process characterized by persistent secondary injury processes which can be exacerbated by subsequent challenges. Enteric pathogen infection during chronic TBI worsened cortical lesion volume; however, the pathophysiological mechanisms underlying the damaging effects of enteric challenge during chronic TBI remain unknown. This preclinical study examined the effect of intestinal inflammation during chronic TBI on associated neurobehavioral and neuropathological outcomes, systemic inflammation, and dysautonomia. METHODS Dextran sodium sulfate (DSS) was administered to adult male C57BL/6NCrl mice 28 days following craniotomy (Sham) or TBI for 7 days to induce intestinal inflammation, followed by a return to normal drinking water for an additional 7 to 28 days for recovery; uninjured animals (Naïve) served as an additional control group. Behavioral testing was carried out prior to, during, and following DSS administration to assess changes in motor and cognitive function, social behavior, and mood. Electrocardiography was performed to examine autonomic balance. Brains were collected for histological and molecular analyses of injury lesion, neurodegeneration, and neuroinflammation. Blood, colons, spleens, mesenteric lymph nodes (mLNs), and thymus were collected for morphometric analyses and/or immune characterization by flow cytometry. RESULTS Intestinal inflammation 28 days after craniotomy or TBI persistently induced, or exacerbated, respectively, deficits in fine motor coordination, cognition, social behavior, and anxiety-like behavior. Behavioral changes were associated with an induction, or exacerbation, of hippocampal neuronal cell loss and microglial activation in Sham and TBI mice administered DSS, respectively. Acute DSS administration resulted in a sustained systemic immune response with increases in myeloid cells in blood and spleen, as well as myeloid cells and lymphocytes in mesenteric lymph nodes. Dysautonomia was also induced in Sham and TBI mice administered DSS, with increased sympathetic tone beginning during DSS administration and persisting through the first recovery week. CONCLUSION Intestinal inflammation during chronic experimental TBI causes a sustained systemic immune response and altered autonomic balance that are associated with microglial activation, increased neurodegeneration, and persistent neurological deficits.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Taryn Aubretch
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Jenna Leser
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Kara Molesworth
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Nivedita Hedgekar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Terez Shea-Donohue
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| |
Collapse
|
35
|
Nieves MD, Furmanski O, Doughty ML. Sensorimotor dysfunction in a mild mouse model of cortical contusion injury without significant neuronal loss is associated with increases in inflammatory proteins with innate but not adaptive immune functions. J Neurosci Res 2020; 99:1533-1549. [PMID: 33269491 DOI: 10.1002/jnr.24766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury is a leading cause of mortality and morbidity in the United States. Acute trauma to the brain triggers chronic secondary injury mechanisms that contribute to long-term neurological impairment. We have developed a single, unilateral contusion injury model of sensorimotor dysfunction in adult mice. By targeting a topographically defined neurological circuit with a mild impact, we are able to track sustained behavioral deficits in sensorimotor function in the absence of tissue cavitation or neuronal loss in the contused cortex of these mice. Stereological histopathology and multiplex enzyme-linked immunosorbent assay proteomic screening confirm contusion resulted in chronic gliosis and the robust expression of innate immune cytokines and monocyte attractant chemokines IL-1β, IL-5, IL-6, TNFα, CXCL1, CXCL2, CXCL10, CCL2, and CCL3 in the contused cortex. In contrast, the expression of neuroinflammatory proteins with adaptive immune functions was not significantly modulated by injury. Our data support widespread activation of innate but not adaptive immune responses, confirming an association between sensorimotor dysfunction with innate immune activation in the absence of tissue or neuronal loss in our mice.
Collapse
Affiliation(s)
- Michael D Nieves
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
36
|
Abstract
Traumatic brain injury leads to cellular damage which in turn results in the rapid release of damage-associated molecular patterns (DAMPs) that prompt resident cells to release cytokines and chemokines. These in turn rapidly recruit neutrophils, which assist in limiting the spread of injury and removing cellular debris. Microglia continuously survey the CNS (central nervous system) compartment and identify structural abnormalities in neurons contributing to the response. After some days, when neutrophil numbers start to decline, activated microglia and astrocytes assemble at the injury site—segregating injured tissue from healthy tissue and facilitating restorative processes. Monocytes infiltrate the injury site to produce chemokines that recruit astrocytes which successively extend their processes towards monocytes during the recovery phase. In this fashion, monocytes infiltration serves to help repair the injured brain. Neurons and astrocytes also moderate brain inflammation via downregulation of cytotoxic inflammation. Depending on the severity of the brain injury, T and B cells can also be recruited to the brain pathology sites at later time points.
Collapse
|
37
|
Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells 2020; 9:cells9092132. [PMID: 32967118 PMCID: PMC7563796 DOI: 10.3390/cells9092132] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia, the immunocompetent cells in the central nervous system (CNS), have long been studied as pathologically deteriorating players in various CNS diseases. However, microglia exert ameliorating neuroprotective effects, which prompted us to reconsider their roles in CNS and peripheral nervous system (PNS) pathophysiology. Moreover, recent findings showed that microglia play critical roles even in the healthy CNS. The microglial functions that normally contribute to the maintenance of homeostasis in the CNS are modified by other cells, such as astrocytes and infiltrated myeloid cells; thus, the microglial actions on neurons are extremely complex. For a deeper understanding of the pathophysiology of various diseases, including those of the PNS, it is important to understand microglial functioning. In this review, we discuss both the favorable and unfavorable roles of microglia in neuronal survival in various CNS and PNS disorders. We also discuss the roles of blood-borne macrophages in the pathogenesis of CNS and PNS injuries because they cooperatively modify the pathological processes of resident microglia. Finally, metabolic changes in glycolysis and oxidative phosphorylation, with special reference to the pro-/anti-inflammatory activation of microglia, are intensively addressed, because they are profoundly correlated with the generation of reactive oxygen species and changes in pro-/anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
- Correspondence: ; Tel.: +81-89-960-5383; Fax: +81-89-960-5386
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
| | - Junya Tanaka
- Department of Molecular and cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan;
| |
Collapse
|
38
|
Regeneration of the neurogliovascular unit visualized in vivo by transcranial live-cell imaging. J Neurosci Methods 2020; 343:108808. [DOI: 10.1016/j.jneumeth.2020.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
39
|
Siebold L, Krueger AC, Abdala JA, Figueroa JD, Bartnik-Olson B, Holshouser B, Wilson CG, Ashwal S. Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury. Front Mol Neurosci 2020; 13:109. [PMID: 32670020 PMCID: PMC7332854 DOI: 10.3389/fnmol.2020.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (CoSyn), a synthetic ACTH analog, on the early inflammatory response and functional outcome following experimental TBI. Methods: The controlled cortical impact model was used to induce TBI in mice. Mice were assigned to injury and treatment protocols resulting in four experimental groups including sham + saline, sham + CoSyn, TBI + saline, and TBI + CoSyn. Treatment was administered subcutaneously 3 h post-injury and daily injections were given for up to 7 days post-injury. The early inflammatory response was evaluated at 3 days post-injury through the evaluation of cytokine expression (IL1β and TNFα) and immune cell response. Quantification of immune cell response included cell counts of microglia/macrophages (Iba1+ cells) and neutrophils (MPO+ cells) in the cortex and hippocampus. Behavioral testing (n = 10–14 animals/group) included open field (OF) and novel object recognition (NOR) during the first week following injury and Morris water maze (MWM) at 10–15 days post-injury. Results: Immune cell quantification showed decreased accumulation of Iba1+ cells in the perilesional cortex and CA1 region of the hippocampus for CoSyn-treated TBI animals compared to saline-treated. Reduced numbers of MPO+ cells were also found in the perilesional cortex and hippocampus in CoSyn treated TBI mice compared to their saline-treated counterparts. Furthermore, CoSyn treatment reduced IL1β expression in the cortex of TBI mice. Behavioral testing showed a treatment effect of CoSyn for NOR with CoSyn increasing the discrimination ratio in both TBI and Sham groups, indicating increased memory performance. CoSyn also decreased latency to find platform during the early training period of the MWM when comparing CoSyn to saline-treated TBI mice suggesting moderate improvements in spatial memory following CoSyn treatment. Conclusion: Reduced microglia/macrophage accumulation and neutrophil infiltration in conjunction with moderate improvements in spatial learning in our CoSyn treated TBI mice suggests a beneficial anti-inflammatory effect of CoSyn following TBI.
Collapse
Affiliation(s)
- Lorraine Siebold
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Amy C Krueger
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jonathan A Abdala
- The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Johnny D Figueroa
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Christopher G Wilson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States.,Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
40
|
Boutté AM, Hook V, Thangavelu B, Sarkis GA, Abbatiello BN, Hook G, Jacobsen JS, Robertson CS, Gilsdorf J, Yang Z, Wang KKW, Shear DA. Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. J Neurotrauma 2020; 37:1574-1586. [PMID: 31973644 DOI: 10.1089/neu.2019.6537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cathepsin B (CatB), a lysosomal cysteine protease, is important to brain function and may have dual utility as a peripheral biomarker of moderate-severe traumatic brain injury (TBI). The present study determined levels of pro- and mature (mat) CatB protein as well as cysteine protease activity within the frontal cortex (FC; proximal injury site), hippocampus (HC; distal injury site), and cerebral spinal fluid (CSF) collected 1-7 days after craniotomy and penetrating ballistic-like brain injury (PBBI) in rats. Values were compared with naïve controls. Further, the utility of CatB protein as a translational biomarker was determined in CSF derived from patients with severe TBI. Craniotomy increased matCatB levels in the FC and HC, and led to elevation of HC activity at day 7. PBBI caused an even greater elevation in matCatB within the FC and HC within 3-7 days. After PBBI, cysteine protease activity peaked at 3 days in the FC and was elevated at 1 day and 7 days, but not 3 days, in the HC. In rat CSF, proCatB, matCatB, and cysteine protease activity peaked at 3 days after craniotomy and PBBI. Addition of CA-074, a CatB-specific inhibitor, confirmed that protease activity was due to active matCatB in rat brain tissues and CSF at all time-points. In patients, CatB protein was detectable from 6 h through 10 days after TBI. Notably, CatB levels were significantly higher in CSF collected within 3 days after TBI compared with non-TBI controls. Collectively, this work indicates that CatB and its cysteine protease activity may serve as collective molecular signatures of TBI progression that differentially vary within both proximal and distal brain regions. CatB and its protease activity may have utility as a surrogate, translational biomarker of acute-subacute TBI.
Collapse
Affiliation(s)
- Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Anis Sarkis
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachussets, USA
| | - Brittany N Abbatiello
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gregory Hook
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - J Steven Jacobsen
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - Claudia S Robertson
- The Center for Neurosurgical Intensive Care, Ben Taub General Hospital Baylor College of Medicine, Department of Neurosurgery, Houston, Texas, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
41
|
Aleem M, Goswami N, Kumar M, Manda K. Low-pressure fluid percussion minimally adds to the sham craniectomy-induced neurobehavioral changes: Implication for experimental traumatic brain injury model. Exp Neurol 2020; 329:113290. [PMID: 32240659 DOI: 10.1016/j.expneurol.2020.113290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Modeling experimental traumatic brain injury (TBI) in rodents is necessarily required to understand the pathophysiological and neurobehavioral consequences of neurotrauma. Numerous models have been developed to study experimental TBI. Fluid percussion injury (FPI) is the most extensively used model to represent clinical phenotypes. Nevertheless, the surgical 'sham' procedure (craniectomy), a prerequisite of FPI, is the impeding factor in experimental TBI. We hypothesized that if craniectomy causes substantial structural and functional changes in the brain, it might mimic the mild FPI-induced neurobehavioral dysfunctions. To understand the hypothesis, C57BL/6 mice were exposed to lateral FPI at 1.2 atm pressure and changes in the neuronal architecture, hippocampal neurogenesis, neuroinflammation, and behavioral functions were compared to the sham (craniectomy) and control mice at day 7 post-FPI. We observed that both the craniectomy and FPI significantly augmented the ipsilateral hippocampal neurogenesis as evaluated by DCX and Beta-III tubulin immunoreactivity. Similarly, a significant increase in GFAP and TMEM immunoreactivity in CA1 and CA3 regions showed that craniectomy mimics FPI-induced neuroinflammation. The additive damaging effect of craniectomy with FPI was also reported in the term of axonal and dendritic fragmentation, swelling and neuronal death using silver staining, Fluoro-jade, and MAP-2 immunoreactivity. Sham-exposed mice showed a significant functional decrease in grip strength. Our results indicate that sham craniectomy itself is enough to cause TBI like characteristics, and thus fluid percussion at mild pressure is minimally additive with craniectomy. Considering the method as a mixed (focal & diffused) injury model, the 'net neurotrauma severity' should be compared with naïve control instead of the sham as it is an outcome of cumulative damage due to fluid pressure and craniectomy. Nevertheless, to understand the long term consequences of neurotrauma, the extent of recovery in surgical sham may separately be quantified.
Collapse
Affiliation(s)
- Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110 054, India
| | - Nidhi Goswami
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110 054, India
| | - Mayank Kumar
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110 054, India
| | - Kailash Manda
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110 054, India.
| |
Collapse
|
42
|
Gebril HM, Rose RM, Gesese R, Emond MP, Huo Y, Aronica E, Boison D. Adenosine kinase inhibition promotes proliferation of neural stem cells after traumatic brain injury. Brain Commun 2020; 2:fcaa017. [PMID: 32322821 PMCID: PMC7158236 DOI: 10.1093/braincomms/fcaa017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health concern and remains a leading cause of disability and socio-economic burden. To date, there is no proven therapy that promotes brain repair following an injury to the brain. In this study, we explored the role of an isoform of adenosine kinase expressed in the cell nucleus (ADK-L) as a potential regulator of neural stem cell proliferation in the brain. The rationale for this hypothesis is based on coordinated expression changes of ADK-L during foetal and postnatal murine and human brain development indicating a role in the regulation of cell proliferation and plasticity in the brain. We first tested whether the genetic disruption of ADK-L would increase neural stem cell proliferation after TBI. Three days after TBI, modelled by a controlled cortical impact, transgenic mice, which lack ADK-L (ADKΔneuron) in the dentate gyrus (DG) showed a significant increase in neural stem cell proliferation as evidenced by significant increases in doublecortin and Ki67-positive cells, whereas animals with transgenic overexpression of ADK-L in dorsal forebrain neurons (ADK-Ltg) showed an opposite effect of attenuated neural stem cell proliferation. Next, we translated those findings into a pharmacological approach to augment neural stem cell proliferation in the injured brain. Wild-type C57BL/6 mice were treated with the small molecule adenosine kinase inhibitor 5-iodotubercidin for 3 days after the induction of TBI. We demonstrate significantly enhanced neural stem cell proliferation in the DG of 5-iodotubercidin-treated mice compared to vehicle-treated injured animals. To rule out the possibility that blockade of ADK-L has any effects in non-injured animals, we quantified baseline neural stem cell proliferation in ADKΔneuron mice, which was not altered, whereas baseline neural stem cell proliferation in ADK-Ltg mice was enhanced. Together these findings demonstrate a novel function of ADK-L involved in the regulation of neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.,Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Rizelle Mae Rose
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Raey Gesese
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Martine P Emond
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Yuqing Huo
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
43
|
Leconte C, Benedetto C, Lentini F, Simon K, Ouaazizi C, Taib T, Cho A, Plotkine M, Mongeau R, Marchand-Leroux C, Besson VC. Histological and Behavioral Evaluation after Traumatic Brain Injury in Mice: A Ten Months Follow-Up Study. J Neurotrauma 2020; 37:1342-1357. [PMID: 31830858 DOI: 10.1089/neu.2019.6679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a chronic pathology, inducing long-term deficits that remain understudied in pre-clinical studies. In this context, exploration, anxiety-like behavior, cognitive flexibility, and motor coordination were assessed until 5 and 10 months after an experimental TBI in the adult mouse, using two cohorts. In order to differentiate age, surgery, and remote gray and white matter lesions, three groups (unoperated, sham-operated, and TBI) were studied. TBI induced delayed motor coordination deficits at the pole test, 4.5 months after injury, that could be explained by gray and white matter damages in ipsilateral nigrostriatal structures (striatum, internal capsule) that were spreading to new structures between cohorts, at 5 versus 10 months after the injury. Further, TBI induced an enhanced exploratory behavior during stressful situations (active phase during actimetry test, object exploration in an open field), risk-taking behaviors in the elevated plus maze 5 months after injury, and a cognitive inflexibility in the Barnes maze that persisted until 9 months after the injury. These behavioral modifications could be related to the white and gray matter lesions observed in ipsi- and contralateral limbic structures (amygdala, hilus/cornu ammonis 4, hypothalamus, external capsule, corpus callosum, and cingular cortex) that were spreading to new structures between cohorts, at 5 months versus 10 months after the injury. The present study corroborates clinical findings on TBI and provides a relevant rodent chronic model which could help in validating pharmacological strategies against the chronic consequences of TBI.
Collapse
Affiliation(s)
- Claire Leconte
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Benedetto
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Federica Lentini
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristin Simon
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chahid Ouaazizi
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Toufik Taib
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelo Cho
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Plotkine
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raymond Mongeau
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie C Besson
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
44
|
Zvejniece L, Stelfa G, Vavers E, Kupats E, Kuka J, Svalbe B, Zvejniece B, Albert-Weissenberger C, Sirén AL, Plesnila N, Dambrova M. Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice. J Neurotrauma 2019; 37:295-304. [PMID: 31441378 PMCID: PMC6964812 DOI: 10.1089/neu.2019.6524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The weight-drop model is used widely to replicate closed-head injuries in mice; however, the histopathological and functional outcomes may vary significantly between laboratories. Because skull fractures are reported to occur in this model, we aimed to evaluate whether these breaks may influence the variability of the weight-drop (WD) model. Male Swiss Webster mice underwent WD injury with either a 2 or 5 mm cone tip, and behavior was assessed at 2 h and 24 h thereafter using the neurological severity score. The expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 genes was measured at 12 h and 1, 3, and 14 days after injury. Before the injury, micro-computed tomography (micro-CT) was performed to quantify skull thickness at the impact site. With a conventional tip diameter of 2 mm, 33% of mice showed fractures of the parietal bone; the 5 mm tip produced only 10% fractures. Compared with mice without fractures, mice with fractures had a severity-dependent worse functional outcome and a more pronounced upregulation of inflammatory genes in the brain. Older mice were associated with thicker parietal bones and were less prone to skull fractures. In addition, mice that underwent traumatic brain injury (TBI) with skull fracture had macroscopic brain damage because of skull depression. Skull fractures explain a considerable proportion of the variability observed in the WD model in mice—i.e., mice with skull fractures have a much stronger inflammatory response than do mice without fractures. Using older mice with thicker skull bones and an impact cone with a larger diameter reduces the rate of skull fractures and the variability in this very useful closed-head TBI model.
Collapse
Affiliation(s)
- Liga Zvejniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Address correspondence to: Liga Zvejniece, MD, PhD, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Gundega Stelfa
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Einars Kupats
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Zvejniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- University of Latvia, Riga, Latvia
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Plesnila
- University of Munich, Institute for Stroke and Dementia Research, Munich, Germany
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| |
Collapse
|
45
|
Cavitation-induced traumatic cerebral contusion and intracerebral hemorrhage in the rat brain by using an off-the-shelf clinical shockwave device. Sci Rep 2019; 9:15614. [PMID: 31666607 PMCID: PMC6821893 DOI: 10.1038/s41598-019-52117-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Traumatic cerebral contusion and intracerebral hemorrhages (ICH) commonly result from traumatic brain injury and are associated with high morbidity and mortality rates. Current animal models require craniotomy and provide less control over injury severity. This study proposes a highly reproducible and controllable traumatic contusion and ICH model using non-invasive extracorporeal shockwaves (ESWs). Rat heads were exposed to ESWs generated by an off-the-shelf clinical device plus intravenous injection of microbubbles to enhance the cavitation effect for non-invasive induction of injury. Results indicate that injury severity can be effectively adjusted by using different ESW parameters. Moreover, the location or depth of injury can be purposefully determined by changing the focus of the concave ESW probe. Traumatic contusion and ICH were confirmed by H&E staining. Interestingly, the numbers of TUNEL-positive cells (apoptotic cell death) peaked one day after ESW exposure, while Iba1-positive cells (reactive microglia) and GFAP-positive cells (astrogliosis) respectively peaked seven and fourteen days after exposure. Cytokine assay showed significantly increased expressions of IL-1β, IL-6, and TNF-α. The extent of brain edema was characterized with magnetic resonance imaging. Conclusively, the proposed non-invasive and highly reproducible preclinical model effectively simulates the mechanism of closed head injury and provides focused traumatic contusion and ICH.
Collapse
|
46
|
Arango-Lievano M, Boussadia B, De Terdonck LDT, Gault C, Fontanaud P, Lafont C, Mollard P, Marchi N, Jeanneteau F. Topographic Reorganization of Cerebrovascular Mural Cells under Seizure Conditions. Cell Rep 2019; 23:1045-1059. [PMID: 29694884 DOI: 10.1016/j.celrep.2018.03.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
Reorganization of the neurovascular unit has been suggested in the epileptic brain, although the dynamics and functional significance remain unclear. Here, we tracked the in vivo dynamics of perivascular mural cells as a function of electroencephalogram (EEG) activity following status epilepticus. We segmented the cortical vascular bed to provide a size- and type-specific analysis of mural cell plasticity topologically. We find that mural cells are added and removed from veins, arterioles, and capillaries after seizure induction. Loss of mural cells is proportional to seizure severity and vascular pathology (e.g., rigidity, perfusion, and permeability). Treatment with platelet-derived growth factor subunits BB (PDGF-BB) reduced mural cell loss, vascular pathology, and epileptiform EEG activity. We propose that perivascular mural cells play a pivotal role in seizures and are potential targets for reducing pathophysiology.
Collapse
Affiliation(s)
- Margarita Arango-Lievano
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France.
| | - Badreddine Boussadia
- Department of Neuroscience, Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Lucile Du Trieu De Terdonck
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Camille Gault
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Pierre Fontanaud
- Department of Physiology, Laboratory of Networks and Rhythms in Endocrine Glands, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Chrystel Lafont
- Department of Physiology, Laboratory of Networks and Rhythms in Endocrine Glands, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Patrice Mollard
- Department of Physiology, Laboratory of Networks and Rhythms in Endocrine Glands, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France
| | - Nicola Marchi
- Department of Neuroscience, Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France.
| | - Freddy Jeanneteau
- Departments of Neuroscience & Physiology, Laboratory of Stress Hormones & Plasticity, Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, 34093 Montpellier, France.
| |
Collapse
|
47
|
Hlusicka J, Loster T, Lischkova L, Vaneckova M, Diblik P, Urban P, Navratil T, Kacer P, Kacerova T, Zakharov S. Reactive carbonyl compounds, carbonyl stress, and neuroinflammation in methyl alcohol intoxication. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Koletar MM, Dorr A, Brown ME, McLaurin J, Stefanovic B. Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two-photon fluorescence microscopy of neurovascular function. Sci Rep 2019; 9:5499. [PMID: 30940849 PMCID: PMC6445076 DOI: 10.1038/s41598-019-41966-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Longitudinal studies using two–photon fluorescence microscopy (TPFM) are critical for facilitating cellular scale imaging of brain morphology and function. Studies have been conducted in the mouse due to their relatively higher transparency and long term patency of a chronic cranial window. Increasing availability of transgenic rat models, and the range of established behavioural paradigms, necessitates development of a chronic preparation for the rat. However, surgical craniotomies in the rat present challenges due to craniotomy closure by wound healing and diminished image quality due to inflammation, restricting most rat TPFM experiments to acute preparations. Long-term patency is enabled by employing sterile surgical technique, minimization of trauma with precise tissue handling during surgery, judicious selection of the size and placement of the craniotomy, diligent monitoring of animal physiology and support throughout the surgery, and modification of the home cage for long-term preservation of cranial implants. Immunohistochemical analysis employing the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) showed activation and recruitment of astrocytes and microglia/macrophages directly inferior to the cranial window at one week after surgery, with more diffuse response in deeper cortical layers at two weeks, and amelioration around four weeks post craniotomy. TPFM was conducted up to 14 weeks post craniotomy, reaching cortical depths of 400 µm to 600 µm at most time-points. The rate of signal decay with increasing depth and maximum cortical depth attained had greater variation between individual rats at a single time-point than within a rat across time.
Collapse
Affiliation(s)
- Margaret M Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
| | - Adrienne Dorr
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Mary E Brown
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
49
|
Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 2019; 16:523-530. [PMID: 30846842 DOI: 10.1038/s41423-019-0213-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is recognized as a global health problem due to its increasing occurrence, challenging treatment, and persistent impacts on brain pathophysiology. Neural cell death in patients with TBI swiftly causes inflammation in the injured brain areas, which is recognized as focal brain inflammation. Focal brain inflammation causes secondary brain injury by exacerbating brain edema and neuronal death, while also exerting divergent beneficial effects, such as sealing the damaged limitans and removing cellular debris. Recent evidence from patients with TBI and studies on animal models suggest that brain inflammation after TBI is not only restricted to the focal lesion but also disseminates to remote areas of the brain. The dissemination of inflammation has been detected within days after the primary injury and persists chronically. This state of inflammation may be related to remote complications of TBI in patients, such as hyperthermia and hypopituitarism, and may lead to progressive neurodegeneration, such as chronic traumatic encephalopathy. Future studies should focus on understanding the mechanisms that govern the initiation and propagation of brain inflammation after TBI and its impacts on post-trauma brain pathology.
Collapse
|
50
|
Hlusicka J, Loster T, Lischkova L, Vaneckova M, Diblik P, Urban P, Navratil T, Kacer P, Kacerova T, Zakharov S. Markers of nucleic acids and proteins oxidative damage in acute methanol poisoning. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2370-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|