1
|
Han T, Wang P, Wang Y, Xun W, Lei J, Wang T, Lu Z, Gan M, Zhang W, Yu B, Wang JB. FAIM regulates autophagy through glutaminolysis in lung adenocarcinoma. Autophagy 2021; 18:1416-1432. [PMID: 34720024 PMCID: PMC9225548 DOI: 10.1080/15548627.2021.1987672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Altered glutamine metabolism is an important aspect of cancer metabolic reprogramming. The GLS isoform GAC (glutaminase C), the rate-limiting enzyme in glutaminolysis, plays a vital role in cancer initiation and progression. Our previous studies demonstrated that phosphorylation of GAC was essential for its high enzymatic activity. However, the molecular mechanisms for GAC in maintaining its high enzymatic activity and protein stability still need to be further clarified. FAIM/FAIM1 (Fas apoptotic inhibitory molecule) is known as an important anti-apoptotic protein, but little is known about its function in tumorigenesis. Here, we found that knocking down FAIM induced macroautophagy/autophagy through suppressing the activation of the MTOR pathway in lung adenocarcinoma. Further studies demonstrated that FAIM could promote the tetramer formation of GAC through increasing PRKCE/PKCε-mediated phosphorylation. What's more, FAIM also stabilized GAC through sequestering GAC from degradation by protease ClpXP. These effects increased the production of α-ketoglutarate, leading to the activation of MTOR. Besides, FAIM also promoted the association of ULK1 and MTOR and this further suppressed autophagy induction. These findings discovered new functions of FAIM and elucidated an important molecular mechanism for GAC in maintaining its high enzymatic activity and protein stability.
Collapse
Affiliation(s)
- Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Pengcheng Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Yanan Wang
- School of Life Sciences, Nanchang University, Nanchang, P. R.China
| | - Wenze Xun
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Tao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Zhuo Lu
- School of Life Sciences, Nanchang University, Nanchang, P. R.China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| |
Collapse
|
2
|
Wang P, Xun W, Han T, Cheng Z. FAIM-S functions as a negative regulator of NF-κB pathway and blocks cell cycle progression in NSCLC cells. Cell Cycle 2020; 19:3458-3467. [PMID: 33249986 DOI: 10.1080/15384101.2020.1843811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Tumorigenesis is closely related to the disorder of the cell cycle. The cell cycle progression includes the interphase (G0/G1, S, and G2 phase) and mitosis (M phase). CCND1 is a key protein that regulates the entry of the G0/G1 phase into the S phase. In our study, we found that the short form of Fas Apoptosis Inhibitory Molecule 1 (FAIM-S) could regulate the expression of CCND1 and had a tumor-suppressing role in non-small cell lung cancer (NSCLC). Overexpressing FAIM-S significantly inhibited the proliferation and cell cycle progression in NSCLC cells. Further studies demonstrated that FAIM-S could interact with IKK-α, reducing its protein stability. This effect led to the suppression of the NF-κB pathway, resulting in the decreased expression of CCND1. Thus, our study demonstrated that FAIM-S functioned as a negative regulator of the NF-κB pathway and played a tumor-suppressing role through blocking cell cycle progression in NSCLC cells.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| | - Wenze Xun
- Department of Burn, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| |
Collapse
|
3
|
Huo J, Xu S, Lam KP. FAIM: An Antagonist of Fas-Killing and Beyond. Cells 2019; 8:cells8060541. [PMID: 31167518 PMCID: PMC6628066 DOI: 10.3390/cells8060541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Fas Apoptosis Inhibitory Molecule (FAIM) is an anti-apoptotic protein that is up-regulated in B cell receptor (BCR)-activated B cells and confers upon them resistance to Fas-mediated cell death. Faim has two alternatively spliced isoforms, with the short isoform ubiquitously expressed in various tissues and the long isoform mainly found in the nervous tissues. FAIM is evolutionarily conserved but does not share any significant primary sequence homology with any known protein. The function of FAIM has been extensively studied in the past 20 years, with its primary role being ascribed to be anti-apoptotic. In addition, several other functions of FAIM were also discovered in different physiological and pathological conditions, such as cell growth, metabolism, Alzheimer’s disease and tumorigenesis. However, the detailed molecular mechanisms underlying FAIM’s role in these conditions remain unknown. In this review, we summarize comprehensively the functions of FAIM in these different contexts and discuss its potential as a diagnostic, prognostic or therapeutic target.
Collapse
Affiliation(s)
- Jianxin Huo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
4
|
Planells-Ferrer L, Urresti J, Coccia E, Galenkamp KMO, Calleja-Yagüe I, López-Soriano J, Carriba P, Barneda-Zahonero B, Segura MF, Comella JX. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 2016; 139:11-21. [DOI: 10.1111/jnc.13729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Jorge Urresti
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Elena Coccia
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Koen M. O. Galenkamp
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Isabel Calleja-Yagüe
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Paulina Carriba
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Miguel F. Segura
- Group of Translational Research in Childhood and Adolescent Cancer; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| |
Collapse
|