1
|
Zeller D, Hiew S, Odorfer T, Nguemeni C. Considering the response in addition to the challenge - a narrative review in appraisal of a motor reserve framework. Aging (Albany NY) 2024; 16:5772-5791. [PMID: 38499388 PMCID: PMC11006496 DOI: 10.18632/aging.205667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 03/20/2024]
Abstract
The remarkable increase in human life expectancy over the past century has been achieved at the expense of the risk of age-related impairment and disease. Neurodegeneration, be it part of normal aging or due to neurodegenerative disorders, is characterized by loss of specific neuronal populations, leading to increasing clinical impairment. The individual course may be described as balance between aging- or disease-related pathology and intrinsic mechanisms of adaptation. There is plenty of evidence that the human brain is provided with exhaustible resources to maintain function in the face of adverse conditions. While a reserve concept has mainly been coined in cognitive neuroscience, emerging evidence suggests similar mechanisms to underlie individual differences of adaptive capacity within the motor system. In this narrative review, we summarize what has been proposed to date about a motor reserve (mR) framework. We present current evidence from research in aging subjects and people with neurological conditions, followed by a description of what is known about potential neuronal substrates of mR so far. As there is no gold standard of mR quantification, we outline current approaches which describe various indicators of mR. We conclude by sketching out potential future directions of research. Expediting our understanding of differences in individual motor resilience towards aging and disease will eventually contribute to new, individually tailored therapeutic strategies. Provided early diagnosis, enhancing the individual mR may be suited to postpone disease onset by years and may be an efficacious contribution towards healthy aging, with an increased quality of life for the elderly.
Collapse
Affiliation(s)
- Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Shawn Hiew
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Thorsten Odorfer
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Carine Nguemeni
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
2
|
Pravatà E, Riccitelli GC, Sestieri C, Sacco R, Cianfoni A, Gobbi C, Zecca C. Migraine in Multiple Sclerosis Patients Affects Functional Connectivity of the Brain Circuitry Involved in Pain Processing. Front Neurol 2021; 12:690300. [PMID: 34456850 PMCID: PMC8397382 DOI: 10.3389/fneur.2021.690300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is particularly common in patients with multiple sclerosis (MS) and has been linked to the dysfunction of the brain circuitry modulating the peripheral nociceptive stimuli. Using MRI, we explored whether changes in the resting state-functional connectivity (RS-FC) may characterize the occurrence of migraine in patients with MS. The RS-FC characteristics in concerned brain regions were explored in 20 MS patients with migraine (MS+M) during the interictal phase, and compared with 19 MS patients without migraine (MS-M), which served as a control group. Functional differences were correlated to the frequency and severity of previous migraine attacks, and with the resulting impact on daily activities. In MS+M, the loss of periaqueductal gray matter (PAG) positive connectivity with the default mode network and the left posterior cranial pons was associated with an increase of migraine attacks frequency. In contrast, the loss of PAG negative connectivity with sensorimotor and visual network was linked to migraine symptom severity and related daily activities impact. Finally, a PAG negative connection was established with the prefrontal executive control network. Migraine in MS+M patients and its impact on daily activities, underlies RS-FC rearrangements between brain regions involved in pain perception and modulation.
Collapse
Affiliation(s)
- Emanuele Pravatà
- Neuroradiology, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland
| | - Gianna C Riccitelli
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Department of Neurology, Neuropsychology and Behavioural Neurology Research Unit, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - Rosaria Sacco
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland
| | - Alessandro Cianfoni
- Neuroradiology, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Claudio Gobbi
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Headache Center, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano Civico e Italiano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
3
|
Alahmadi AAS, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT, Gandini Wheeler-Kingshott CAM. Blood Oxygenation Level-Dependent Response to Multiple Grip Forces in Multiple Sclerosis: Going Beyond the Main Effect of Movement in Brodmann Area 4a and 4p. Front Cell Neurosci 2021; 15:616028. [PMID: 33981201 PMCID: PMC8109244 DOI: 10.3389/fncel.2021.616028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study highlights the importance of looking beyond the main effect of movement to study alterations in functional response in the presence of central nervous system pathologies such as multiple sclerosis (MS). Data show that MS selectively affects regional BOLD (blood oxygenation level dependent) responses to variable grip forces (GF). It is known that the anterior and posterior BA 4 areas (BA 4a and BA 4p) are anatomically and functionally distinct. It has also been shown in healthy volunteers that there are linear (first order, typical of BA 4a) and nonlinear (second to fourth order, typical of BA 4p) BOLD responses to different levels of GF applied during a dynamic motor paradigm. After modeling the BOLD response with a polynomial expansion of the applied GFs, the particular case of BA 4a and BA 4p were investigated in healthy volunteers (HV) and MS subjects. The main effect of movement (zeroth order) analysis showed that the BOLD signal is greater in MS compared with healthy volunteers within both BA 4 subregions. At higher order, BOLD-GF responses were similar in BA 4a but showed a marked alteration in BA 4p of MS subjects, with those with greatest disability showing the greatest deviations from the healthy response profile. Therefore, the different behaviors in HV and MS could only be uncovered through a polynomial analysis looking beyond the main effect of movement into the two BA 4 subregions. Future studies will investigate the source of this pathophysiology, combining the present fMRI paradigm with blood perfusion and nonlinear neuronal response analysis.
Collapse
Affiliation(s)
- Adnan A. S. Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rebecca S. Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Karl J. Friston
- Wellcome Centre for Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ahmed T. Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Chard DT, Alahmadi AAS, Audoin B, Charalambous T, Enzinger C, Hulst HE, Rocca MA, Rovira À, Sastre-Garriga J, Schoonheim MM, Tijms B, Tur C, Gandini Wheeler-Kingshott CAM, Wink AM, Ciccarelli O, Barkhof F. Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nat Rev Neurol 2021; 17:173-184. [PMID: 33437067 DOI: 10.1038/s41582-020-00439-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
MRI studies have provided valuable insights into the structure and function of neural networks, particularly in health and in classical neurodegenerative conditions such as Alzheimer disease. However, such work is also highly relevant in other diseases of the CNS, including multiple sclerosis (MS). In this Review, we consider the effects of MS pathology on brain networks, as assessed using MRI, and how these changes to brain networks translate into clinical impairments. We also discuss how this knowledge can inform the targeting of MS treatments and the potential future directions for research in this area. Studying MS is challenging as its pathology involves neurodegenerative and focal inflammatory elements, both of which could disrupt neural networks. The disruption of white matter tracts in MS is reflected in changes in network efficiency, an increasingly random grey matter network topology, relative cortical disconnection, and both increases and decreases in connectivity centred around hubs such as the thalamus and the default mode network. The results of initial longitudinal studies suggest that these changes evolve rather than simply increase over time and are linked with clinical features. Studies have also identified a potential role for treatments that functionally modify neural networks as opposed to altering their structure.
Collapse
Affiliation(s)
- Declan T Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK. .,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.
| | - Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France.,AP-HM, University Hospital Timone, Department of Neurology, Marseille, France
| | - Thalis Charalambous
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Enzinger
- Department of Neurology, Research Unit for Neuronal Repair and Plasticity, Medical University of Graz, Graz, Austria.,Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Neurology, Luton and Dunstable University Hospital, Luton, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alle Meije Wink
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK
| | - Frederik Barkhof
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | | |
Collapse
|
5
|
Has Silemek AC, Fischer L, Pöttgen J, Penner IK, Engel AK, Heesen C, Gold SM, Stellmann JP. Functional and structural connectivity substrates of cognitive performance in relapsing remitting multiple sclerosis with mild disability. Neuroimage Clin 2020; 25:102177. [PMID: 32014828 PMCID: PMC6997626 DOI: 10.1016/j.nicl.2020.102177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 01/11/2020] [Indexed: 01/10/2023]
Abstract
Multiple Sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS), which can lead to severe cognitive impairment over time. Magnetic resonance imaging (MRI) is currently the best available biomarker to track MS pathophysiology in vivo and examine the link to clinical disability. However, conventional MRI metrics have limited sensitivity and specificity to detect direct associations between symptoms and their underlying CNS substrates. In this study, we aimed to investigate structural and resting state functional connectomes and subnetworks associated with neuropsychological (NP) performance using a graph theoretical approach. A comprehensive NP test battery was administered in a sample of patients with relapsing remitting MS (RRMS) and mild disability [n = 33, F/M = 20/13, age = 40.9 ± 9.7, median [Expanded Disability Status Scale] (EDSS) = 2, range =0-4] and compared to healthy controls (HC) [n = 29, F/M = 19/10, age = 41.0 ± 8.5] closely matched for age, sex, and level of education. The NP battery comprised the most relevant domains of cognitive dysfunction in MS including attention, processing speed, verbal and spatial learning and memory, and executive function. While standard MRI metrics showed good correlations with TAP Alertness test, disease duration and neurological exams, structural networks showed closer associations with 9-hole peg test and cognitive performances. Decreased graph strength was associated with two out of the 5 NP tests in the spatial learning and memory domain specified by BVMT [Sum 1-3] and BVMT [Recall], and with also SDMT which is one out of the 9 NP tests in the attention/processing speed domain, while no correlation was found between these scores and functional connectivity. Nodal strength was decreased in all subnetworks based on Yeo atlas in patients compared to HC; however, no difference was observed in nodal level of functional connectivity between the groups. The difference in structural and functional nodal connectivity between the groups was also observed in the relationship between structural and functional connectivity within the groups; the relationship between nodal degree and nodal strength was reversed in patients but positive in controls. On a nodal level, structural and functional networks (mainly the default mode network) were correlated with more than one cognitive domain rather than one specific network for each domain within patients. Interestingly, poorer cognitive performance was mostly correlated with increased functional connectivity but decreased structural connectivity in patients. Increased functional connectivity in the default mode network had both positive as well as negative associations with verbal and spatial learning and memory, possibly indicating adaptive and maladaptive mechanisms. In conclusion, our results suggest that cognitive performance, even in patients with RRMS and very mild disability, may reflect a loss of structural connectivity. In contrast, widespread increases in functional connectivity may be the result of maladaptive processes.
Collapse
Affiliation(s)
- Arzu Ceylan Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany.
| | - Lukas Fischer
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Iris-Katharina Penner
- Klinik für Neurologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany; COGITO Zentrum für Angewandte Neurokognition und Neuropsychologische Forschung, Düsseldorf 40225, Germany
| | - Andreas K Engel
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin 12203, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg 20246, Germany; APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| |
Collapse
|
6
|
Petsas N, De Giglio L, González-Quintanilla V, Giuliani M, De Angelis F, Tona F, Carmellini M, Mainero C, Pozzilli C, Pantano P. Functional Connectivity Changes After Initial Treatment With Fingolimod in Multiple Sclerosis. Front Neurol 2019; 10:153. [PMID: 30967828 PMCID: PMC6438876 DOI: 10.3389/fneur.2019.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/05/2019] [Indexed: 11/27/2022] Open
Abstract
On the basis of recent functional MRI studies, Multiple Sclerosis (MS) has been interpreted as a multisystem disconnection syndrome. Compared to normal subjects, MS patients show alterations in functional connectivity (FC). However, the mechanisms underlying these alterations are still debated. The aim of the study is to investigate resting state (RS) FC changes after initial treatment with fingolimod, a proven anti-inflammatory and immunomodulating agent for MS. We studied 32 right-handed relapsing-remitting MS patients (median Expanded Disability Status Scale: 2.0, mean disease duration: 8.8 years) who underwent both functional and conventional MRI with a 3 Tesla magnet. All assessments were performed 3 weeks before starting fingolimod, then, at therapy-initiation stage and at month 6. Each imaging session included scans at baseline (run1) and after (run2) a 25-min, within-session, motor-practice task, consisting of a paced right-thumb flexion. FC was assessed using a seed on the left primary motor cortex to obtain parametric maps at run1 and task-induced FC change (run2-run1). Comparison between 3-week before- and fingolimod start sessions accounted for a test-retest effect. The main outcome was the changes in both baseline and task-induced changes in FC, between initiation and 6 months. MRI contrast enhancement was detected in 14 patients at initiation and only in 3 at month 6. There was a significant improvement (p < 0.05) in cognitive function, as measured by the Paced Auditory Serial Addition Task, at month 6 compared to initiation. After accounting for test-retest effect, baseline FC significantly decreased at month 6, with respect to initiation (p < 0.05, family-wise error corrected) in bilateral occipito-parietal areas and cerebellum. A task-induced change in FC at month 6 showed a significant increment in all examined sessions, involving not only areas of the sensorimotor network, but also posterior cortical areas (cuneus and precuneus) and areas of the prefrontal and temporal cortices (p < 0.05, family-wise error corrected). Cognitive improvement at month 6 was significantly (p < 0.05) related to baseline FC reduction in posterior cortical areas. This study shows significant changes in functional connectivity, both at baseline and after the execution of a simple motor task following 6 months of fingolimod therapy.
Collapse
Affiliation(s)
| | - Laura De Giglio
- Multiple Sclerosis Centre, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Manuela Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francesca Tona
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Carlo Pozzilli
- Multiple Sclerosis Centre, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Radiology, IRCCS NEUROMED, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Wirsching I, Buttmann M, Odorfer T, Volkmann J, Classen J, Zeller D. Altered motor plasticity in an acute relapse of multiple sclerosis. Eur J Neurosci 2018; 47:251-257. [PMID: 29285814 DOI: 10.1111/ejn.13818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
In relapsing-remitting MS (RRMS), the symptoms of a clinical relapse subside over time. Neuroplasticity is believed to play an important compensatory role. In this study, we assessed excitability-decreasing plasticity during an acute relapse of MS and 12 weeks afterwards. Motor plasticity was examined in 19 patients with clinically isolated syndrome or RRMS during a steroid-treated relapse (t1) and 12 weeks afterwards (t2) using paired-associative stimulation (PAS10). This method combines repetitive electric nerve stimulation with transcranial magnetic stimulation of the contralateral motor cortex to model long-term synaptic depression in the human cortex. Additionally, 19 age-matched healthy controls were assessed. Motor-evoked potentials of the abductor pollicis brevis muscle were recorded before and after intervention. Clinical disability was assessed by the multiple sclerosis functional composite and the subscore of the nine-hole peg test taken as a measure of hand function. The effect of PAS10 was significantly different between controls and patients; at t1, but not at t2, baseline-normalized postinterventional amplitudes were significantly higher in patients (106 [IQR 98-137] % post10-15 and 111 [IQR 88-133] % post20-25) compared to controls (92 [IQR 85-111] % and 90 [IQR 75-102] %). Additional exploratory analysis indicated a potentially excitability-enhancing effect of PAS10 in patients as opposed to controls. Significant clinical improvement between t1 and t2 was not correlated with PAS10 effects. Our results indicate an alteration of PAS10-induced synaptic plasticity during relapse, presumably reflecting a polarity shift due to metaplastic processes within the motor cortex. Further studies will need to elucidate the functional significance of such changes for the clinical course of MS.
Collapse
Affiliation(s)
- Isabelle Wirsching
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Thorsten Odorfer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, 04103, Leipzig, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
8
|
Peterson DS, Fling BW. How changes in brain activity and connectivity are associated with motor performance in people with MS. Neuroimage Clin 2017; 17:153-162. [PMID: 29071209 PMCID: PMC5651557 DOI: 10.1016/j.nicl.2017.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
People with multiple sclerosis (MS) exhibit pronounced changes in brain structure, activity, and connectivity. While considerable work has begun to elucidate how these neural changes contribute to behavior, the heterogeneity of symptoms and diagnoses makes interpretation of findings and application to clinical practice challenging. In particular, whether MS related changes in brain activity or brain connectivity protect against or contribute to worsening motor symptoms is unclear. With the recent emergence of neuromodulatory techniques that can alter neural activity in specific brain regions, it is critical to establish whether localized brain activation patterns are contributing to (i.e. maladaptive) or protecting against (i.e. adaptive) progression of motor symptoms. In this manuscript, we consolidate recent findings regarding changes in supraspinal structure and activity in people with MS and how these changes may contribute to motor performance. Furthermore, we discuss a hypothesis suggesting that increased neural activity during movement may be either adaptive or maladaptive depending on where in the brain this increase is observed. Specifically, we outline preliminary evidence suggesting sensorimotor cortex activity in the ipsilateral cortices may be maladaptive in people with MS. We also discuss future work that could supply data to support or refute this hypothesis, thus improving our understanding of this important topic.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, Tempe, AZ, USA; Veterans Affairs Phoenix Medical Center Phoenix, AZ, USA.
| | | |
Collapse
|
9
|
Neuroimaging Techniques to Assess Inflammation in Multiple Sclerosis. Neuroscience 2017; 403:4-16. [PMID: 28764938 DOI: 10.1016/j.neuroscience.2017.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic neurological disease that represents a leading cause of disability in young adults and is characterized by inflammation and degeneration of both white matter (WM) and gray matter (GM). Defining the presence or absence of inflammation on individual basis is a key point in choosing the therapy and monitoring the treatment response. Magnetic resonance imaging (MRI) represents the most sensitive non-invasive tool to monitor inflammation in the clinical practice. Indeed, in the early phase of inflammation MRI detects new lesions as extrusion of gadolinium contrast agents across the altered blood-brain-barrier (BBB). The occurrence of MRI lesions is used to confirm diagnosis and has been validated as surrogate marker of relapse to monitor response to treatments. However, focal gadolinium-enhancing lesions represent only an aspect of neuroinflammation. Recent studies have suggested the presence of a widespread inflammation of the central nervous system (CNS), which is mainly related to microglial cells activation occurring both at the edge of chronic focal lesions and throughout the normal-appearing brain tissue. New imaging techniques have been developed to study diffuse inflammation taking place outside the focal plaques. The scope of this review is to examine the various neuroimaging techniques and those biophysical quantities that can be non-invasively detected to enlighten the different aspects of neuroinflammation. Some techniques are commonly used in the clinical practice, while others are used in the research field to better understand the pathophysiological mechanisms of the disease and the role of inflammation.
Collapse
|
10
|
Cui F, Zhou L, Wang Z, Lang C, Park J, Tan Z, Yu Y, Sun C, Gao Y, Kong J. Altered Functional Connectivity of Striatal Subregions in Patients with Multiple Sclerosis. Front Neurol 2017; 8:129. [PMID: 28484419 PMCID: PMC5401875 DOI: 10.3389/fneur.2017.00129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Abnormal corticostriatal resting-state functional connectivity (rsFC) has been implicated in the neuropathology of multiple sclerosis. The striatum, a component of the basal ganglia, is involved in diverse functions including movement, cognition, emotion, and limbic information processing. However, the brain circuits of the striatal subregions contributing to the changes in rsFC in relapsing–remitting multiple sclerosis (RRMS) patients remain unknown. We used six subdivisions of the striatum in each hemisphere as seeds to investigate the rsFC of striatal subregions between RRMS patients and matched healthy controls (HCs). In addition, we also scanned a subcohort of RRMS patients after an average of 7 months to test the reliability of our findings. Compared to HCs, we found significantly increased dorsal caudal putamen (DCP) connectivity with the premotor area, dorsal lateral prefrontal cortex (DLPFC), insula, precuneus, and superior parietal lobule, and significantly increased connectivity between the superior ventral striatum and posterior cingulate cortex (PCC) in RRMS patients following both scans. Furthermore, we found significant associations between the Expanded Disability Status Scale and the rsFC of the left DCP with the DLPFC and parietal areas in RRMS patients. Our results suggest that the DCP may be a critical striatal subregion in the pathophysiology of RRMS.
Collapse
Affiliation(s)
- Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Li Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Yu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Sun
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
11
|
The Mirror Neuron System in Relapsing Remitting Multiple Sclerosis Patients with Low Disability. Brain Topogr 2017; 30:548-559. [DOI: 10.1007/s10548-017-0558-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
12
|
Shu N, Duan Y, Xia M, Schoonheim MM, Huang J, Ren Z, Sun Z, Ye J, Dong H, Shi FD, Barkhof F, Li K, Liu Y. Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci Rep 2016; 6:29383. [PMID: 27403924 PMCID: PMC4941534 DOI: 10.1038/srep29383] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
The brain connectome of multiple sclerosis (MS) has been investigated by several previous studies; however, it is still unknown how the network changes in clinically isolated syndrome (CIS), the earliest stage of MS, and how network alterations on a functional level relate to the structural level in MS disease. Here, we investigated the topological alterations of both the structural and functional connectomes in 41 CIS and 32 MS patients, compared to 35 healthy controls, by combining diffusion tensor imaging and resting-state functional MRI with graph analysis approaches. We found that the structural connectome showed a deviation from the optimal pattern as early as the CIS stage, while the functional connectome only showed local changes in MS patients, not in CIS. When comparing two patient groups, the changes appear more severe in MS. Importantly, the disruptions of structural and functional connectomes in patients occurred in the same direction and locally correlated in sensorimotor component. Finally, the extent of structural network changes was correlated with several clinical variables in MS patients. Together, the results suggested early disruption of the structural brain connectome in CIS patients and provided a new perspective for investigating the relationship of the structural and functional alterations in MS.
Collapse
Affiliation(s)
- Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P. R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Yunyun Duan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P. R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Menno M Schoonheim
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1007 MB, The Netherlands.,Department of Anatomy and Neuroscience, VU University Medical Center, Amsterdam 1007 MB, The Netherlands
| | - Jing Huang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Zhuoqiong Ren
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Zheng Sun
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Jing Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Fu-Dong Shi
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1007 MB, The Netherlands
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China.,Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1007 MB, The Netherlands.,Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| |
Collapse
|
13
|
Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions. Eur Radiol 2015; 26:2982-91. [PMID: 26714968 DOI: 10.1007/s00330-015-4147-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/04/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate brain functional connectivity (FC) alterations in patients with clinically isolated syndromes (CIS) presenting without conventional brain MRI lesions, and to identify the FC differences between the CIS patients who converted to multiple sclerosis (MS) and those not converted during a 5-year follow-up. METHODS We recruited 20 CIS patients without conventional brain lesions, 28 patients with MS and 28 healthy controls (HC). Normalized voxel-based functional connectivity strength (nFCS) was determined using resting-state fMRI (R-fMRI) and compared among groups. Furthermore, 5-years clinical follow-up of the CIS patients was performed to examine the differences in nFCS between converters and non-converters. RESULTS Compared to HC, CIS patients showed significantly decreased nFCS in the visual areas and increased nFCS in several brain regions predominately in the temporal lobes. MS patients revealed more widespread higher nFCS especially in deep grey matter (DGM), compared to CIS and HC. In the four CIS patients converting to MS, significantly higher nFCS was found in right anterior cingulate gyrus (ACC) and fusiform gyrus (FG), compared to non-converted patients. CONCLUSION We demonstrated both functional impairment and compensation in CIS by R-fMRI. nFCS alteration in ACC and FG seems to occur in CIS patients at risk of developing MS. KEY POINTS • Both functional impairment and compensation occur in CIS without conventional brain lesions. • MS patients revealed more widespread higher nFCS especially in deep grey matter. • nFCS alteration may help stratifying CIS at risk of developing MS.
Collapse
|