1
|
Fagan MM, Welch CB, Scheulin KM, Sneed SE, Jeon JH, Golan ME, Cheek SR, Barany DA, Oeltzschner G, Callaway TR, Zhao Q, Park HJ, Lourenco JM, Duberstein KJ, West FD. Fecal microbial transplantation limits neural injury severity and functional deficits in a pediatric piglet traumatic brain injury model. Front Neurosci 2023; 17:1249539. [PMID: 37841685 PMCID: PMC10568032 DOI: 10.3389/fnins.2023.1249539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.
Collapse
Affiliation(s)
- Madison M. Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Christina B. Welch
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M. Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Sydney E. Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Julie H. Jeon
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Morgane E. Golan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Savannah R. Cheek
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, College of Education, University of Georgia, Athens, GA, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Todd R. Callaway
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Kylee J. Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
He L, Wei T, Huang Y, Zhang X, Zhu D, Liu H, Wang Z. miR-214-3p Deficiency Enhances Caspase-1-Dependent Pyroptosis of Microglia in White Matter Injury. J Immunol Res 2022; 2022:1642896. [PMID: 39262408 PMCID: PMC11390193 DOI: 10.1155/2022/1642896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 09/13/2024] Open
Abstract
White matter injury (WMI) is the most frequent impairment of neurodevelopment in preterm infants. Here, we report that the caspase-1 inflammasome is abundantly activated in the microglia of WMI mice and results in increased pyroptosis of microglia. Pharmacology inhibition of caspase-1 cleavage alleviated the pathogenesis of WMI mice. The expression of microRNA miR-214-3p was largely reduced in the microglia of WMI mice compared to controls. Compromised expression of miR-214-3p on microglia gives rise to the inflammasome activation and microglial pyroptosis. Treatment with miR-214-3p agomir is sufficient to relieve the white matter lesion and demyelination in WMI mice. miR-214-3p is able to bind to the 3' region of the NLRP-3 inflammasome compartment NEK7, preventing the transcription of NEK7 mRNA. As a result, in WMI mice, the lack of miR-214-3p leads to the accumulation of NEK7 which supports NLRP 3 inflammasome activation, microglial pyroptosis, and white matter pathogenesis.
Collapse
Affiliation(s)
- Liufang He
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Tingyan Wei
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Yong Huang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Xueli Zhang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Dongbo Zhu
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Huazhen Liu
- Section of Immunology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Zhangxing Wang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| |
Collapse
|
3
|
McCook O, Scheuerle A, Denoix N, Kapapa T, Radermacher P, Merz T. Localization of the hydrogen sulfide and oxytocin systems at the depth of the sulci in a porcine model of acute subdural hematoma. Neural Regen Res 2021; 16:2376-2382. [PMID: 33907009 PMCID: PMC8374554 DOI: 10.4103/1673-5374.313018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
In the porcine model discussed in this review, the acute subdural hematoma was induced by subdural injection of autologous blood over the left parietal cortex, which led to a transient elevation of the intracerebral pressure, measured by bilateral neuromonitoring. The hematoma-induced brain injury was associated with albumin extravasation, oxidative stress, reactive astrogliosis and microglial activation in the ipsilateral hemisphere. Further proteins and injury markers were validated to be used for immunohistochemistry of porcine brain tissue. The cerebral expression patterns of oxytocin, oxytocin receptor, cystathionine-γ-lyase and cystathionine-β-synthase were particularly interesting: these four proteins all co-localized at the base of the sulci, where pressure-induced brain injury elicits maximum stress. In this context, the pig is a very relevant translational model in contrast to the rodent brain. The structure of the porcine brain is very similar to the human: the presence of gyri and sulci (gyrencephalic brain), white matter to grey matter proportion and tentorium cerebelli. Thus, pressure-induced injury in the porcine brain, unlike in the rodent brain, is reflective of the human pathophysiology.
Collapse
Affiliation(s)
- Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Angelika Scheuerle
- Department of Neuropathology, Ulm University Medical Center, Günzburg, Germany
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, Ulm University Medical Center, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Differential Role of p53 in Oligodendrocyte Survival in Response to Various Stresses: Experimental Autoimmune Encephalomyelitis, Cuprizone Intoxication or White Matter Stroke. Int J Mol Sci 2021; 22:ijms222312811. [PMID: 34884611 PMCID: PMC8658009 DOI: 10.3390/ijms222312811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Promoting oligodendrocyte viability has been proposed as a therapeutic strategy for alleviating many neuronal diseases, such as multiple sclerosis and stroke. However, molecular pathways critical for oligodendrocyte survival under various stresses are still not well known. p53 is a strong tumor suppressor and regulates cell cycle, DNA repair and cell death. Our previous studies have shown that p53 plays an important role in promoting neuronal survival after insults, but its specific role in oligodendrocyte survival is not known. Here, we constructed the mice with oligodendrocyte-specific p53 loss by crossing TRP53flox/flox mice and CNP-cre mice, and found that p53 was dispensable for oligodendrocyte differentiation and myelin formation under physiological condition. In the experimental autoimmune encephalomyelitis (EAE) model, p53 loss of function, specifically in oligodendrocytes, did not affect the EAE disease severity and had no effect on demyelination in the spinal cord of the mice. Interestingly, p53 deficiency in oligodendrocytes significantly attenuated the demyelination of corpus callosum and alleviated the functional impairment of motor coordination and spatial memory in the cuprizone demyelination model. Moreover, the oligodendrocyte-specific loss of p53 provided protection against subcortical white matter damage and mitigated recognition memory impairment in mice in the white matter stroke model. These results suggest that p53 plays different roles in the brain and spinal cord or in response to various stresses. Thus, p53 may be a therapeutic target for oligodendrocyte prevention in specific brain injuries, such as white matter stroke and multiple sclerosis.
Collapse
|
5
|
Xie Y, Zhang X, Xu P, Zhao N, Zhao Y, Li Y, Hong Y, Peng M, Yuan K, Wan T, Sun R, Chen D, Xu L, Chen J, Guo H, Shan W, Li J, Li R, Xiong Y, Liu D, Wang Y, Liu G, Ye R, Liu X. Aberrant oligodendroglial LDL receptor orchestrates demyelination in chronic cerebral ischemia. J Clin Invest 2021; 131:128114. [PMID: 33141760 DOI: 10.1172/jci128114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Oligodendrocytes express low-density lipoprotein receptor (LDLR) to endocytose cholesterol for the maintenance of adulthood myelination. However, the potential role of LDLR in chronic cerebral ischemia-related demyelination remains unclear. We used bilateral carotid artery stenosis (BCAS) to induce sustained cerebral ischemia in mice. This hypoxic-ischemic injury caused a remarkable decrease in oligodendroglial LDLR, with impaired oligodendroglial differentiation and survival. Oligodendroglial cholesterol levels, however, remained unchanged. Mouse miR-344e-3p and the human homolog miR-410-3p, 2 miRNAs directly targeting Ldlr, were identified in experimental and clinical leukoaraiosis and were thus implicated in the LDLR reduction. Lentiviral delivery of LDLR ameliorated demyelination following chronic cerebral ischemia. By contrast, Ldlr-/- mice displayed inadequate myelination in the corpus callosum. Ldlr-/- oligodendrocyte progenitor cells (OPCs) exhibited reduced ability to differentiate and myelinate axons in vitro. Transplantation with Ldlr-/- OPCs could not rescue the BCAS-induced demyelination. Such LDLR-dependent myelin restoration might involve a physical interaction of the Asn-Pro-Val-Tyr (NPVY) motif with the phosphotyrosine binding domain of Shc, which subsequently activated the MEK/ERK pathway. Together, our findings demonstrate that the aberrant oligodendroglial LDLR in chronic cerebral ischemia impairs myelination through intracellular signal transduction. Preservation of oligodendroglial LDLR may provide a promising approach to treat ischemic demyelination.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Pengfei Xu
- Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nana Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ye Hong
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mengna Peng
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Kang Yuan
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Wan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lili Xu
- Department of Neurology, Nanjing Brain Hospital Affiliated with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjing Chen
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu, China
| | - Wanying Shan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Rongrong Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yunyun Xiong
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dezhi Liu
- Department of Neurology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
The effect of antipsychotic medications on white matter integrity in first-episode drug-naïve patients with psychosis: A review of DTI studies. Asian J Psychiatr 2021; 61:102688. [PMID: 34000500 DOI: 10.1016/j.ajp.2021.102688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psychotic episodes have been associated with damage to both grey matter (GM) and white matter (WM). Although a recent meta-analysis suggest that in long term treatment, first generation antipsychotics (FGA) are associated with progressive reduction in GM, second generation antipsychotics (SGA) seem to have benefits to WM microstructure. METHODS A search was conducted to identify controlled trials published from January 2000 to January 2021, which assessed WM integrity as measured by DTI in drug-naïve patients with FEP before and after antipsychotic administration. RESULTS 3 studies met the criteria for inclusion. All studies demonstrated lower FA in psychotic patients vs HC. A 6-week study reported that antipsychotic medication results in a further decrease in FA within the bilateral ACG and right ACR, regions important in emotional processing. An 8-week study found that antipsychotic treatment increase FA in the SLF, resulting in improved symptoms and increased processing speed. A 3rd study found an increase in FA in several regions along with a negative correlation between FA and PANSS at remission. CONCLUSIONS Drug-naïve FEP patients have WM dysfunction at baseline and antipsychotic medications appear to alter or improve WM especially at remission. More controlled trials are warranted to validate these conclusions.
Collapse
|
7
|
Spellicy SE, Hess DC. The Immunomodulatory Capacity of Induced Pluripotent Stem Cells in the Post-stroke Environment. Front Cell Dev Biol 2021; 9:647415. [PMID: 33796535 PMCID: PMC8007866 DOI: 10.3389/fcell.2021.647415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammation has proven to be a key contributing factor to the pathogenesis of ischemic and hemorrhagic stroke. This sequential and progressive response, marked by proliferation of resident immune cells and recruitment of peripheral immune populations, results in increased oxidative stress, and neuronal cell death. Therapeutics aimed at quelling various stages of this post-stroke inflammatory response have shown promise recently, one of which being differentiated induced pluripotent stem cells (iPSCs). While direct repopulation of damaged tissues and enhanced neurogenesis are hypothesized to encompass some of the therapeutic potential of iPSCs, recent evidence has demonstrated a substantial paracrine effect on neuroinflammation. Specifically, investigation of iPSCs, iPSC-neural progenitor cells (iPSC-NPCs), and iPSC-neuroepithelial like stem cells (iPSC-lt-NESC) has demonstrated significant immunomodulation of proinflammatory signaling and endogenous inflammatory cell populations, such as microglia. This review aims to examine the mechanisms by which iPSCs mediate neuroinflammation in the post-stroke environment, as well as delineate avenues for further investigation.
Collapse
Affiliation(s)
- Samantha E Spellicy
- MD-Ph.D. Program, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David C Hess
- Dean's Office, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Wu Z, Xue H, Zhang Y, Zhao P. Dexmedetomidine alleviates neurobehavioral impairments and myelination deficits following lipopolysaccharide exposure in early postnatal rats. Life Sci 2020; 263:118556. [PMID: 33038375 DOI: 10.1016/j.lfs.2020.118556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023]
Abstract
AIMS White matter injury (WMI) is the main form of brain injury in preterm neonate survivors, and perinatal inflammation is implicated in the pathogenesis of WMI. It has been demonstrated that dexmedetomidine, an anesthetic adjuvant, possesses neuroprotective effects in both preclinical and clinical trials. The present study was conducted to explore whether dexmedetomidine could protect against neurobehavioral impairments and myelination deficits caused by lipopolysaccharide (LPS) exposure in the early postnatal rat brain. MAIN METHODS LPS (2 mg/kg) was intraperitoneally (i.p.) injected in Sprague-Dawley rat pups on postnatal day 2 (P2). Dexmedetomidine (25 μg/kg) or vehicle was given i.p. immediately after LPS injection. STAT3 and p-STAT3 expression were detected by western blot in rat brain 24 h after drug administration. Immunostaining for GFAP to was performed to evaluate astrocytic response at 24 h post-LPS and P14. Neurobehavioral tests (the righting reflex, negative geotaxis, and wire hanging maneuver tests) were performed from P5 to P10. Histological analysis of myelin content was accessed by immunohistochemistry for CNPase and MBP at P14. KEY FINDINGS Our results showed that treatment with dexmedetomidine significantly ameliorated LPS-induced neurobehavioral abnormalities and myelin damage, which is accompanied by suppression of STAT3 activation and reactive astrogliosis. SIGNIFICANCE Dexmedetomidine can alleviate neurobehavioral impairments and myelination deficits after LPS exposure in early postnatal rats, probably by mitigating STAT3-mediated reactive astrogliosis. Our results suggest that dexmedetomidine might be a promising agent to treat brain injury in neonates.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yahan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Omotoso GO, Arietarhire LO, Ukwubile II, Gbadamosi IT. The Protective Effect of Kolaviron on Molecular, Cellular, and Behavioral Characterization of Cerebellum in the Rat Model of Demyelinating Diseases. Basic Clin Neurosci 2020; 11:609-618. [PMID: 33643554 PMCID: PMC7878059 DOI: 10.32598/bcn.9.10.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION This study aimed at assessing the protective mechanisms of Kolaviron (KV) on the cerebellum in a rat model of demyelination. METHODS Twenty-eight male Wistar rats were used in the present study. They were randomly divided into 4 groups of 7 rats. Group A (control) received corn oil (0.5 mL/kg/d); group B received 0.2% Cuprizone (CPZ); group C was treated with 200 mg/kg/d of KV, and group D received 0.2% CPZ and 200 mg/kg/d KV for 6 weeks. CPZ powder was mixed with the regular diet while KV was dissolved in corn oil and administered orally. A behavioral test was conducted at the termination of the experiment. Thereafter, the animals were sacrificed and their brains were removed with the excision of the cerebellum. A part of the cerebelli underwent tissue processing with a series of 5 μm thick sections cut from paraffin blocks for histological and immunohistochemical assessment. Besides, the remaining cerebellar tissues were homogenized for the spectrophotometric assays of Oxidative Stress (OS) parameters. RESULTS The current research findings revealed minimal weight gain following CPZ treatment, but significant weight increase in KV-treated rats. CPZ treatment was associated with a reduction in the number of the line crossed, rearing frequency, rearing duration, center square entry, and center square duration; however, it increased the freezing time, i.e. significantly reversed in the KV-treated animals. Oxidative markers, such as Superoxide Dismutase (SOD) and GPx were reduced in CPZ-treated rats with elevated MDA levels. However, these data were significantly reversed by the co-administration of CPZ and KV. At the tissue level, the cerebellar cortex was characterized by poorly defined layers, cryptic granules, as well as chromatolysis and pyknotic Purkinje cells with the evidence of hypertrophic astrogliosis. CONCLUSION CPZ treatment significantly depressed locomotor and exploratory activities. Furthermore, it increased OS and cerebellar toxicity. However, KV intervention significantly enhanced behavioral functions and ameliorated CPZ-induced cerebellar degeneration. Moreover, it considerably regulated OS markers in the cerebellum of the rat model of demyelinating diseases.
Collapse
Affiliation(s)
- Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Ileje Inelo Ukwubile
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
10
|
Kaiser EE, Waters ES, Fagan MM, Scheulin KM, Platt SR, Jeon JH, Fang X, Kinder HA, Shin SK, Duberstein KJ, Park HJ, West FD. Characterization of tissue and functional deficits in a clinically translational pig model of acute ischemic stroke. Brain Res 2020; 1736:146778. [PMID: 32194080 PMCID: PMC10671789 DOI: 10.1016/j.brainres.2020.146778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
The acute stroke phase is a critical time frame used to evaluate stroke severity, therapeutic options, and prognosis while also serving as a major tool for the development of diagnostics. To further understand stroke pathophysiology and to enhance the development of treatments, our group developed a translational pig ischemic stroke model. In this study, the evolution of acute ischemic tissue damage, immune responses, and functional deficits were further characterized. Stroke was induced by middle cerebral artery occlusion in Landrace pigs. At 24 h post-stroke, magnetic resonance imaging revealed a decrease in ipsilateral diffusivity, an increase in hemispheric swelling resulting in notable midline shift, and intracerebral hemorrhage. Stroke negatively impacted white matter integrity with decreased fractional anisotropy values in the internal capsule. Like patients, pigs showed a reduction in circulating lymphocytes and a surge in neutrophils and band cells. Functional responses corresponded with structural changes through reductions in open field exploration and impairments in spatiotemporal gait parameters. Characterization of acute ischemic stroke in pigs provided important insights into tissue and functional-level assessments that could be used to identify potential biomarkers and improve preclinical testing of novel therapeutics.
Collapse
Affiliation(s)
- Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Madison M Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Julie H Jeon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Xi Fang
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Soo K Shin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States; Department of Pharmaceutical and Biomedical Sciences, Interdisciplinary Toxicology Institute, University of Georgia, Athens, GA, United States
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Hea J Park
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
11
|
Kaiser EE, West FD. Large animal ischemic stroke models: replicating human stroke pathophysiology. Neural Regen Res 2020; 15:1377-1387. [PMID: 31997796 PMCID: PMC7059570 DOI: 10.4103/1673-5374.274324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The high morbidity and mortality rate of ischemic stroke in humans has led to the development of numerous animal models that replicate human stroke to further understand the underlying pathophysiology and to explore potential therapeutic interventions. Although promising therapeutics have been identified using these animal models, with most undergoing significant testing in rodent models, the vast majority of these interventions have failed in human clinical trials. This failure of preclinical translation highlights the critical need for better therapeutic assessment in more clinically relevant ischemic stroke animal models. Large animal models such as non-human primates, sheep, pigs, and dogs are likely more predictive of human responses and outcomes due to brain anatomy and physiology that are more similar to humans-potentially making large animal testing a key step in the stroke therapy translational pipeline. The objective of this review is to highlight key characteristics that potentially make these gyrencephalic, large animal ischemic stroke models more predictive by comparing pathophysiological responses, tissue-level changes, and model limitations.
Collapse
Affiliation(s)
- Erin E Kaiser
- Regenerative Bioscience Center; Neuroscience Program, Biomedical and Health Sciences Institute; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Neuroscience Program, Biomedical and Health Sciences Institute; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Kinder HA, Baker EW, Wang S, Fleischer CC, Howerth EW, Duberstein KJ, Mao H, Platt SR, West FD. Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model. J Neurotrauma 2019; 36:2930-2942. [PMID: 31084386 DOI: 10.1089/neu.2018.6303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in children. Pediatric TBI patients often suffer from crippling cognitive, emotional, and motor function deficits that have negative lifelong effects. The objective of this study was to longitudinally assess TBI pathophysiology using multi-parametric magnetic resonance imaging (MRI), gait analysis, and histological approaches in a pediatric piglet model. TBI was produced by controlled cortical impact in Landrace piglets. MRI data, including from proton magnetic resonance spectroscopy (MRS), were collected 24 hours and 12 weeks post-TBI, and gait analysis was performed at multiple time-points over 12 weeks post-TBI. A subset of animals was sacrificed 24 hours, 1 week, 4 weeks, and 12 weeks post-TBI for histological analysis. MRI results demonstrated that TBI led to a significant brain lesion and midline shift as well as microscopic tissue damage with altered brain diffusivity, decreased white matter integrity, and reduced cerebral blood flow. MRS showed a range of neurochemical changes after TBI. Histological analysis revealed neuronal loss, astrogliosis/astrocytosis, and microglia activation. Further, gait analysis showed transient impairments in cadence, cycle time, % stance, step length, and stride length, as well as long-term impairments in weight distribution after TBI. Taken together, this study illustrates the distinct time course of TBI pathoanatomic and functional responses up to 12 weeks post-TBI in a piglet TBI model. The study of TBI injury and recovery mechanisms, as well as the testing of therapeutics in this translational model, are likely to be more predictive of human responses and clinical outcomes compared to traditional small animal models.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Silun Wang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
13
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
14
|
Kinder HA, Baker EW, West FD. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019; 14:413-424. [PMID: 30539807 PMCID: PMC6334610 DOI: 10.4103/1673-5374.245334] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models-the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, West FD. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:61-73. [DOI: 10.1089/neu.2017.5551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emily W. Baker
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Holly A. Kinder
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jessica M. Hutcheson
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kylee Jo J. Duberstein
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Simon R. Platt
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth W. Howerth
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
16
|
Scaled traumatic brain injury results in unique metabolomic signatures between gray matter, white matter, and serum in a piglet model. PLoS One 2018; 13:e0206481. [PMID: 30379914 PMCID: PMC6209298 DOI: 10.1371/journal.pone.0206481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability in the United States. The heterogeneity of the disease coupled with the lack of comprehensive, standardized scales to adequately characterize multiple types of TBI remain to be major challenges facing effective therapeutic development. A systems level approach to TBI diagnosis through the use of metabolomics could lead to a better understanding of cellular changes post-TBI and potential therapeutic targets. In the current study, we utilize a GC-MS untargeted metabolomics approach to demonstrate altered metabolism in response to TBI in a translational pig model, which possesses many neuroanatomical and pathophysiologic similarities to humans. TBI was produced by controlled cortical impact (CCI) in Landrace piglets with impact velocity and depth of depression set to 2m/s;6mm, 4m/s;6mm, 4m/s;12mm, or 4m/s;15mm resulting in graded neural injury. Serum samples were collected pre-TBI, 24 hours post-TBI, and 7 days post-TBI. Partial least squares discriminant analysis (PLS-DA) revealed that each impact parameter uniquely influenced the metabolomic profile after TBI, and gray and white matter responds differently to TBI on the biochemical level with evidence of white matter displaying greater metabolic change. Furthermore, pathway analysis revealed unique metabolic signatures that were dependent on injury severity and brain tissue type. Metabolomic signatures were also detected in serum samples which potentially captures both time after injury and injury severity. These findings provide a platform for the development of a more accurate TBI classification scale based unique metabolomic signatures.
Collapse
|
17
|
Webb RL, Kaiser EE, Jurgielewicz BJ, Spellicy S, Scoville SL, Thompson TA, Swetenburg RL, Hess DC, West FD, Stice SL. Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a Porcine Model of Ischemic Stroke. Stroke 2018; 49:1248-1256. [PMID: 29650593 PMCID: PMC5916046 DOI: 10.1161/strokeaha.117.020353] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Recent work from our group suggests that human neural stem cell-derived extracellular vesicle (NSC EV) treatment improves both tissue and sensorimotor function in a preclinical thromboembolic mouse model of stroke. In this study, NSC EVs were evaluated in a pig ischemic stroke model, where clinically relevant end points were used to assess recovery in a more translational large animal model. METHODS Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO), and either NSC EV or PBS treatment was administered intravenously at 2, 14, and 24 hours post-MCAO. NSC EV effects on tissue level recovery were evaluated via magnetic resonance imaging at 1 and 84 days post-MCAO. Effects on functional recovery were also assessed through longitudinal behavior and gait analysis testing. RESULTS NSC EV treatment was neuroprotective and led to significant improvements at the tissue and functional levels in stroked pigs. NSC EV treatment eliminated intracranial hemorrhage in ischemic lesions in NSC EV pigs (0 of 7) versus control pigs (7 of 8). NSC EV-treated pigs exhibited a significant decrease in cerebral lesion volume and decreased brain swelling relative to control pigs 1-day post-MCAO. NSC EVs significantly reduced edema in treated pigs relative to control pigs, as assessed by improved diffusivity through apparent diffusion coefficient maps. NSC EVs preserved white matter integrity with increased corpus callosum fractional anisotropy values 84 days post-MCAO. Behavior and mobility improvements paralleled structural changes as NSC EV-treated pigs exhibited improved outcomes, including increased exploratory behavior and faster restoration of spatiotemporal gait parameters. CONCLUSIONS This study demonstrated for the first time that in a large animal model novel NSC EVs significantly improved neural tissue preservation and functional levels post-MCAO, suggesting NSC EVs may be a paradigm changing stroke therapeutic.
Collapse
Affiliation(s)
- Robin L Webb
- From the ArunA Biomedical, Athens, GA (R.L.W., S.L. Scoville, T.A.T., R.L.S).,Regenerative Bioscience Center (R.L.W., E.E.K., B.J.J., S.S., F.D.W., S.L. Stice)
| | - Erin E Kaiser
- Regenerative Bioscience Center (R.L.W., E.E.K., B.J.J., S.S., F.D.W., S.L. Stice).,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences (E.E.K., F.D.W.)
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center (R.L.W., E.E.K., B.J.J., S.S., F.D.W., S.L. Stice)
| | - Samantha Spellicy
- Regenerative Bioscience Center (R.L.W., E.E.K., B.J.J., S.S., F.D.W., S.L. Stice)
| | - Shelley L Scoville
- From the ArunA Biomedical, Athens, GA (R.L.W., S.L. Scoville, T.A.T., R.L.S)
| | - Tyler A Thompson
- From the ArunA Biomedical, Athens, GA (R.L.W., S.L. Scoville, T.A.T., R.L.S)
| | | | - David C Hess
- University of Georgia, Rhodes Center for Animal and Dairy Science, Athens; and Department of Neurology, Augusta University, GA (D.C.H.)
| | - Franklin D West
- Regenerative Bioscience Center (R.L.W., E.E.K., B.J.J., S.S., F.D.W., S.L. Stice).,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences (E.E.K., F.D.W.)
| | - Steven L Stice
- Regenerative Bioscience Center (R.L.W., E.E.K., B.J.J., S.S., F.D.W., S.L. Stice)
| |
Collapse
|
18
|
Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget 2018; 8:31638-31654. [PMID: 28404943 PMCID: PMC5458236 DOI: 10.18632/oncotarget.15780] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Hypoxic-ischemic and inflammatory (HII) induces the disruption of blood–brain barrier (BBB) which leads to inflammatory responses and neuronal cell death, resulting in brain secondary damage. Previous studies showed that melatonin produced potent neuroprotective effects in neonatal hypoxic-ischaemic models. However, the relationship between BBB disruption and melatonin in HII was still unclear. The present study therefore investigated the beneficial effects of melatonin on BBB after HII and the underlying mechanisms. HII animal model was conducted by receiving lipopolysaccharide followed by 90 min hypoxia-ischaemia in postnatal day 2 Sprague–Dawley rat pups. Melatonin was injected intraperitoneally 1 h before lipopolysaccharide injection and then once a day for 1 week to evaluate the long-term effects. In this study, we demonstrated that melatonin administration inhibited the disruption of BBB permeability and improved the white matter recovery in HII model rats. Melatonin significantly attenuated the degradation of junction proteins and the neuroprotective role was related to the inhibition of microglial toll-like receptor 4/ nuclear factor-kappa B signaling pathway both in vivo and in vitro. Taken together, our data demonstrated that therapeutic strategies targeting inflammation might be suitable for the therapy of preserving BBB integrity after HII.
Collapse
|
19
|
Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Enhances Recovery in an Ischemic Stroke Pig Model. Sci Rep 2017; 7:10075. [PMID: 28855627 PMCID: PMC5577218 DOI: 10.1038/s41598-017-10406-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem cell-derived neural stem cells (iNSCs) have significant potential as an autologous, multifunctional cell therapy for stroke, which is the primary cause of long term disability in the United States and the second leading cause of death worldwide. Here we show that iNSC transplantation improves recovery through neuroprotective, regenerative, and cell replacement mechanisms in a novel ischemic pig stroke model. Longitudinal multiparametric magnetic resonance imaging (MRI) following iNSC therapy demonstrated reduced changes in white matter integrity, cerebral blood perfusion, and brain metabolism in the infarcted tissue. The observed tissue level recovery strongly correlated with decreased immune response, enhanced neuronal protection, and increased neurogenesis. iNSCs differentiated into neurons and oligodendrocytes with indication of long term integration. The robust recovery response to iNSC therapy in a translational pig stroke model with increased predictive potential strongly supports that iNSCs may be the critically needed therapeutic for human stroke patients.
Collapse
|
20
|
Iwasa K, Yamamoto S, Yagishita S, Maruyama K, Yoshikawa K. Excitotoxicity-induced prostaglandin D 2 production induces sustained microglial activation and delayed neuronal death. J Lipid Res 2017; 58:649-655. [PMID: 28174214 PMCID: PMC5392741 DOI: 10.1194/jlr.m070532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Excitotoxicity is the pivotal mechanism of neuronal death. Prostaglandins (PGs) produced during excitotoxicity play important roles in neurodegenerative conditions. Previously, we demonstrated that initial burst productions of PGD2, PGE2, and PGF2α are produced by cyclooxygenase-2 (COX-2) in the hippocampus following a single systemic kainic acid (KA) administration. In addition, we showed that blocking of all PG productions ameliorated hippocampal delayed neuronal death at 30 days after KA administration. To investigate the role of individual PGs in the delayed neuronal death, we performed intracerebroventricular injection of PGD2, PGE2, or PGF2α in rats whose hippocampal PG productions were entirely blocked by pretreatment of NS398, a COX-2 selective inhibitor. Administration of PGD2 and PGF2α had a latent contribution to the delayed neuronal death, sustained over 30 days after a single KA treatment. Furthermore, PGD2 enhanced microglial activation, which may be involved in the delayed neuronal death in the hippocampus. These findings suggest that excitotoxic delayed neuronal death is mediated through microglia activated by PGD2.
Collapse
Affiliation(s)
- Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan.
| |
Collapse
|
21
|
Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol 2017; 133:245-261. [PMID: 28064357 PMCID: PMC5250659 DOI: 10.1007/s00401-017-1667-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/31/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022]
Abstract
The vast majority of cerebral stroke cases are caused by transient or permanent occlusion of a cerebral blood vessel (“ischemic stroke”) eventually leading to brain infarction. The final infarct size and the neurological outcome depend on a multitude of factors such as the duration and severity of ischemia, the existence of collateral systems and an adequate systemic blood pressure, etiology and localization of the infarct, but also on age, sex, comorbidities with the respective multimedication and genetic background. Thus, ischemic stroke is a highly complex and heterogeneous disorder. It is immediately obvious that experimental models of stroke can cover only individual specific aspects of this multifaceted disease. A basic understanding of the principal molecular pathways induced by ischemia-like conditions comes already from in vitro studies. One of the most frequently used in vivo models in stroke research is the endovascular suture or filament model in rodents with occlusion of the middle cerebral artery (MCA), which causes reproducible infarcts in the MCA territory. It does not require craniectomy and allows reperfusion by withdrawal of the occluding filament. Although promptly restored blood flow is far from the pathophysiology of spontaneous human stroke, it more closely mimics the therapeutic situation of mechanical thrombectomy which is expected to be increasingly applied to stroke patients. Direct transient or permanent occlusion of cerebral arteries represents an alternative approach but requires craniectomy. Application of endothelin-1, a potent vasoconstrictor, allows induction of transient focal ischemia in nearly any brain region and is frequently used to model lacunar stroke. Circumscribed and highly reproducible cortical lesions are characteristic of photothrombotic stroke where infarcts are induced by photoactivation of a systemically given dye through the intact skull. The major shortcoming of this model is near complete lack of a penumbra. The two models mimicking human stroke most closely are various embolic stroke models and spontaneous stroke models. Closeness to reality has its price and goes along with higher variability of infarct size and location as well as unpredictable stroke onset in spontaneous models versus unpredictable reperfusion in embolic clot models.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz; Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
22
|
Edwardson MA, Wang X, Liu B, Ding L, Lane CJ, Park C, Nelsen MA, Jones TA, Wolf SL, Winstein CJ, Dromerick AW. Stroke Lesions in a Large Upper Limb Rehabilitation Trial Cohort Rarely Match Lesions in Common Preclinical Models. Neurorehabil Neural Repair 2017; 31:509-520. [PMID: 28337932 DOI: 10.1177/1545968316688799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stroke patients with mild-moderate upper extremity motor impairments and minimal sensory and cognitive deficits provide a useful model to study recovery and improve rehabilitation. Laboratory-based investigators use lesioning techniques for similar goals. OBJECTIVE To determine whether stroke lesions in an upper extremity rehabilitation trial cohort match lesions from the preclinical stroke recovery models used to drive translational research. METHODS Clinical neuroimages from 297 participants enrolled in the Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) study were reviewed. Images were characterized based on lesion type (ischemic or hemorrhagic), volume, vascular territory, depth (cortical gray matter, cortical white matter, subcortical), old strokes, and leukoaraiosis. Lesions were compared with those of preclinical stroke models commonly used to study upper limb recovery. RESULTS Among the ischemic stroke participants, median infarct volume was 1.8 mL, with most lesions confined to subcortical structures (61%) including the anterior choroidal artery territory (30%) and the pons (23%). Of ICARE participants, <1% had lesions resembling proximal middle cerebral artery or surface vessel occlusion models. Preclinical models of subcortical white matter injury best resembled the ICARE population (33%). Intracranial hemorrhage participants had small (median 12.5 mL) lesions that best matched the capsular hematoma preclinical model. CONCLUSIONS ICARE subjects are not representative of all stroke patients, but they represent a clinically and scientifically important subgroup. Compared with lesions in general stroke populations and widely studied animal models of recovery, ICARE participants had smaller, more subcortically based strokes. Improved preclinical-clinical translational efforts may require better alignment of lesions between preclinical and human stroke recovery models.
Collapse
Affiliation(s)
- Matthew A Edwardson
- 1 Georgetown University, Washington, DC, USA.,2 MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Ximing Wang
- 3 University of Southern California, Los Angeles, CA, USA
| | - Brent Liu
- 3 University of Southern California, Los Angeles, CA, USA
| | - Li Ding
- 3 University of Southern California, Los Angeles, CA, USA
| | | | - Caron Park
- 3 University of Southern California, Los Angeles, CA, USA
| | | | | | - Steven L Wolf
- 5 Emory University, Atlanta, GA, USA.,6 VA Center on Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| | | | - Alexander W Dromerick
- 1 Georgetown University, Washington, DC, USA.,2 MedStar National Rehabilitation Hospital, Washington, DC, USA.,7 VA Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
Jolkkonen J, Kwakkel G. Translational Hurdles in Stroke Recovery Studies. Transl Stroke Res 2016; 7:331-42. [PMID: 27000881 DOI: 10.1007/s12975-016-0461-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/11/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
Emerging understanding of brain plasticity has opened new avenues for the treatment of stroke. The promising preclinical evidence with neuroprotective drugs has not been confirmed in clinical trials, thus nowadays, researchers, pharmaceutical companies, and funding bodies hesitate to initiate these expensive trials with restorative therapies. Since many of the previous failures can be traced to low study quality, a number of guidelines such as STAIR and STEPS were introduced to rectify these shortcomings. However, these guidelines stem from the study design for neuroprotective drugs and one may question whether they are appropriate for restorative approaches, which rely heavily on behavioral testing. Most of the recovery studies conducted in stroke patients have been small-scale, proof-of-concept trials. Consequently, the overall effect sizes of pooled phase II trials have proved unreliable and unstable in most meta-analyses. Although the methodological quality of trials in humans is improving, most studies still suffer from methodological flaws and do not meet even the minimum of evidence-based standards for reporting randomized controlled trials. The power problem of most phase II trials is mostly attributable to a lack of proper stratification with robust prognostic factors at baseline as well as the incorrect assumption that all patients will exhibit the same proportional amount of spontaneous neurological recovery poststroke. In addition, most trials suffer from insufficient treatment contrasts between the experimental and control arm and the outcomes have not been sufficiently responsive to detect small but clinically relevant changes in neurological impairments and activities. This narrative review describes the main factors that bias recovery studies, both in experimental animals and stroke patients.
Collapse
Affiliation(s)
- Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland. .,Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland.
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Neurorehabilitation, Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|