1
|
Zhu W, Chen C, Zhang L, Hoyt T, Walker E, Venkatesh S, Zhang F, Qureshi F, Foley JF, Xia Z. Association between serum multi-protein biomarker profile and real-world disability in multiple sclerosis. Brain Commun 2023; 6:fcad300. [PMID: 38192492 PMCID: PMC10773609 DOI: 10.1093/braincomms/fcad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024] Open
Abstract
Few studies examined blood biomarkers informative of patient-reported outcome (PRO) of disability in people with multiple sclerosis (MS). We examined the associations between serum multi-protein biomarker profiles and patient-reported MS disability. In this cross-sectional study (2017-2020), adults with diagnosis of MS (or precursors) from two independent clinic-based cohorts were divided into a training and test set. For predictors, we examined seven clinical factors (age at sample collection, sex, race/ethnicity, disease subtype, disease duration, disease-modifying therapy [DMT], and time interval between sample collection and closest PRO assessment) and 19 serum protein biomarkers potentially associated with MS disease activity endpoints identified from prior studies. We trained machine learning (ML) models (Least Absolute Shrinkage and Selection Operator regression [LASSO], Random Forest, Extreme Gradient Boosting, Support Vector Machines, stacking ensemble learning, and stacking classification) for predicting Patient Determined Disease Steps (PDDS) score as the primary endpoint and reported model performance using the held-out test set. The study included 431 participants (mean age 49 years, 81% women, 94% non-Hispanic White). For binary PDDS score, combined feature input of routine clinical factors and the 19 proteins consistently outperformed base models (comprising clinical features alone or clinical features plus one single protein at a time) in predicting severe (PDDS ≥ 4) versus mild/moderate (PDDS < 4) disability across multiple machine learning approaches, with LASSO achieving the best area under the curve (AUCPDDS = 0.91) and other metrics. For ordinal PDDS score, LASSO model comprising combined clinical factors and 19 proteins as feature input (R2PDDS = 0.31) again outperformed base models. The two best-performing LASSO models (i.e., binary and ordinal PDDS score) shared six clinical features (age, sex, race/ethnicity, disease subtype, disease duration, DMT efficacy) and nine proteins (cluster of differentiation 6, CUB-domain-containing protein 1, contactin-2, interleukin-12 subunit-beta, neurofilament light chain [NfL], protogenin, serpin family A member 9, tumor necrosis factor superfamily member 13B, versican). By comparison, LASSO models with clinical features plus one single protein at a time as feature input did not select either NfL or glial fibrillary acidic protein (GFAP) as a final feature. Forcing either NfL or GFAP as a single protein feature into models did not improve performance beyond clinical features alone. Stacking classification model using five functional pathways to represent multiple proteins as meta-features implicated those involved in neuroaxonal integrity as significant contributors to predictive performance. Thus, serum multi-protein biomarker profiles improve the prediction of real-world MS disability status beyond clinical profile alone or clinical profile plus single protein biomarker, reaching clinically actionable performance.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenyi Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lili Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammy Hoyt
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Elizabeth Walker
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shruthi Venkatesh
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fujun Zhang
- Octave Bioscience, Inc., Menlo Park, CA, USA
| | | | - John F Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Kalle J, Pontus W, Lenka N, Simon S, Ann B, Gunnar B, Kaj B, Henrik Z, Markus A. Cerebrospinal fluid amyloid precursor protein as a potential biomarker of fatigue in multiple sclerosis: A pilot study. Mult Scler Relat Disord 2022; 63:103846. [DOI: 10.1016/j.msard.2022.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
|
3
|
Pietroboni AM, Colombi A, Carandini T, Sacchi L, Fenoglio C, Marotta G, Arighi A, De Riz MA, Fumagalli GG, Castellani M, Bozzali M, Scarpini E, Galimberti D. Amyloid PET imaging and dementias: potential applications in detecting and quantifying early white matter damage. Alzheimers Res Ther 2022; 14:33. [PMID: 35151361 PMCID: PMC8841045 DOI: 10.1186/s13195-021-00933-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Purpose Positron emission tomography (PET) with amyloid tracers (amy-PET) allows the quantification of pathological amyloid deposition in the brain tissues, including the white matter (WM). Here, we evaluate amy-PET uptake in WM lesions (WML) and in the normal-appearing WM (NAWM) of patients with Alzheimer’s disease (AD) and non-AD type of dementia. Methods Thirty-three cognitively impaired subjects underwent brain magnetic resonance imaging (MRI), Aβ1-42 (Aβ) determination in the cerebrospinal fluid (CSF) and amy-PET. Twenty-three patients exhibiting concordant results in both CSF analysis and amy-PET for cortical amyloid deposition were recruited and divided into two groups, amyloid positive (A+) and negative (A−). WML quantification and brain volumes’ segmentation were performed. Standardized uptake values ratios (SUVR) were calculated in the grey matter (GM), NAWM and WML on amy-PET coregistered to MRI images. Results A+ compared to A− showed a higher WML load (p = 0.049) alongside higher SUVR in all brain tissues (p < 0.01). No correlations between CSF Aβ levels and WML and NAWM SUVR were found in A+, while, in A−, CSF Aβ levels were directly correlated to NAWM SUVR (p = 0.04). CSF Aβ concentration was the only predictor of NAWM SUVR (adj R2 = 0.91; p = 0.04) in A−. In A+ but not in A− direct correlations were identified between WM and GM SUVR (p < 0.01). Conclusions Our data provide evidence on the role of amy-PET in the assessment of microstructural WM injury in non-AD dementia, whereas amy-PET seems less suitable to assess WM damage in AD patients due to a plausible amyloid accrual therein.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy. .,University of Milan, Milan, Italy. .,Dino Ferrari Center, Milan, Italy.
| | - Annalisa Colombi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Luca Sacchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | | | - Giorgio Marotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Milena A De Riz
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Giorgio G Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Massimo Castellani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Marco Bozzali
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| |
Collapse
|
4
|
Decourt B, D’Souza GX, Shi J, Ritter A, Suazo J, Sabbagh MN. The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging Dis 2022; 13:37-60. [PMID: 35111361 PMCID: PMC8782548 DOI: 10.14336/ad.2021.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aβ) is involved in AD, in the seminal stage of the disease Aβ is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aβ is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aβ becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aβ as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.
Collapse
Affiliation(s)
- Boris Decourt
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Gary X D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Jiong Shi
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Aaron Ritter
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Jasmin Suazo
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Marwan N Sabbagh
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| |
Collapse
|
5
|
Spectral signature of multiple sclerosis. Preliminary studies of blood fraction by ATR FTIR technique. Biochem Biophys Res Commun 2022; 593:40-45. [DOI: 10.1016/j.bbrc.2022.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
|
6
|
Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. Int J Mol Sci 2021; 22:ijms22147377. [PMID: 34298997 PMCID: PMC8306353 DOI: 10.3390/ijms22147377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment. Notably, the development of rationally targeted therapeutics enabling pre-emptive treatment to halt the disease is also delayed without such biomarkers. Using literature mining and bioinformatic analyses, this review assessed the available proteomic studies of MS patients and animal models to discern (1) whether the models effectively mimic MS; and (2) whether reasonable biomarker candidates have been identified. The implication and necessity of assessing proteoforms and the critical importance of this to identifying rational biomarkers are discussed. Moreover, the challenges of using different proteomic analytical approaches and biological samples are also addressed.
Collapse
|
7
|
Jacob L, Koyanagi A, Haro JM, Konrad M, Uepping P, Kostev K. Association between inflammatory central nervous system diseases and epilepsy: A retrospective cohort study of 4252 patients in Germany. Epilepsy Behav 2021; 117:107879. [PMID: 33711682 DOI: 10.1016/j.yebeh.2021.107879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
GOAL The goal of this study was to analyze the association between inflammatory central nervous system (CNS) diseases and the incidence of epilepsy in patients followed up for up to 10 years in Germany. METHODS This retrospective cohort study included adults aged ≥ 18 years who had an initial diagnosis of inflammatory CNS disease (i.e. encephalitis, meningitis or brain abscess) in one of 1229 general practices in Germany between 2005 and 2015 (index date). Patients without inflammatory CNS disease were matched (1:1) to those with inflammatory CNS disease by sex, age, follow-up time after index date, Charlson Comorbidity Index, and practice. The index date for patients without inflammatory CNS disease was a randomly selected visit date between 2005 and 2015. Kaplan-Meier curves and Cox regression analyses were used to assess the association between inflammatory CNS diseases and the incidence of epilepsy. RESULTS This study included 2126 individuals with and 2126 patients without inflammatory CNS disease (56.4% women; mean [SD] age 50.0 [12.3] years). Within ten years of the index date, 4.2% of patients with and 1.5% of patients without inflammatory CNS disease had been diagnosed with epilepsy (p < 0.001). This finding was corroborated in the Cox regression analysis, and there was a positive and significant association between inflammatory CNS diseases and epilepsy (HR: 3.82, 95% CI: 2.24-6.52). CONCLUSIONS Based on these results, preventive interventions are urgently warranted to reduce the incidence of epilepsy in individuals with a history of inflammatory CNS disease.
Collapse
Affiliation(s)
- Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Spain; Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux 78180, France
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Josep Maria Haro
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Spain
| | - Marcel Konrad
- Health & Social, FOM University of Applied Sciences for Economics and Management, Frankfurt am Main, Germany
| | | | | |
Collapse
|
8
|
Stojić-Vukanić Z, Hadžibegović S, Nicole O, Nacka-Aleksić M, Leštarević S, Leposavić G. CD8+ T Cell-Mediated Mechanisms Contribute to the Progression of Neurocognitive Impairment in Both Multiple Sclerosis and Alzheimer's Disease? Front Immunol 2020; 11:566225. [PMID: 33329528 PMCID: PMC7710704 DOI: 10.3389/fimmu.2020.566225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Neurocognitive impairment (NCI) is one of the most relevant clinical manifestations of multiple sclerosis (MS). The profile of NCI and the structural and functional changes in the brain structures relevant for cognition in MS share some similarities to those in Alzheimer's disease (AD), the most common cause of neurocognitive disorders. Additionally, despite clear etiopathological differences between MS and AD, an accumulation of effector/memory CD8+ T cells and CD8+ tissue-resident memory T (Trm) cells in cognitively relevant brain structures of MS/AD patients, and higher frequency of effector/memory CD8+ T cells re-expressing CD45RA (TEMRA) with high capacity to secrete cytotoxic molecules and proinflammatory cytokines in their blood, were found. Thus, an active pathogenetic role of CD8+ T cells in the progression of MS and AD may be assumed. In this mini-review, findings supporting the putative role of CD8+ T cells in the pathogenesis of MS and AD are displayed, and putative mechanisms underlying their pathogenetic action are discussed. A special effort was made to identify the gaps in the current knowledge about the role of CD8+ T cells in the development of NCI to "catalyze" translational research leading to new feasible therapeutic interventions.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Senka Hadžibegović
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Sanja Leštarević
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
9
|
Pietroboni AM, Colombi A, Carandini T, Scarpini E, Galimberti D, Bozzali M. The Role of Amyloid-β in White Matter Damage: Possible Common Pathogenetic Mechanisms in Neurodegenerative and Demyelinating Diseases. J Alzheimers Dis 2020; 78:13-22. [PMID: 32925075 DOI: 10.3233/jad-200868] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Just as multiple sclerosis (MS) has long been primarily considered a white matter (WM) disease, Alzheimer's disease (AD) has for decades been regarded only as a grey matter disorder. However, convergent evidences have suggested that WM abnormalities are also important components of AD, at the same extent as axonal and neuronal loss is critically involved in MS pathophysiology since early clinical stages. These observations have motivated a more thorough investigation about the possible mechanisms that could link neuroinflammation and neurodegeneration, focusing on amyloid-β (Aβ). Neuroimaging studies have found that patients with AD have widespread WM abnormalities already at the earliest disease stages and prior to the presence of Aβ plaques. Moreover, a correlation between cerebrospinal fluid (CSF) Aβ levels and WM lesion load was found. On the other hand, recent studies suggest a predictive role for CSF Aβ levels in MS, possibly due in the first instance to the reduced capacity for remyelination, consequently to a higher risk of WM damage progression, and ultimately to neuronal loss. We undertook a review of the recent findings concerning the involvement of CSF Aβ levels in the MS disease course and of the latest evidence of AD related WM abnormalities, with the aim to discuss the potential causes that may connect WM damage and amyloid pathology.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | | | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | - Marco Bozzali
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Turin, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
10
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2020; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
11
|
"A case report: Co-occurrence of cerebral amyloid angiopathy and multiple sclerosis". Mult Scler Relat Disord 2020; 46:102517. [PMID: 32977078 DOI: 10.1016/j.msard.2020.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a chronic pathological condition characterized by progressive accumulation of amyloid protein in the wall of cerebral blood vessels, both leptomeningeal and cortical. That may result in the development of such conditions as microaneurysms, hemorrhagic, ischaemic brain injury and contribute to cognitive impairment. We herein report a case of Iowa-type hereditary cerebral amyloid angiopathy (CAA) mutation diagnosed with MS. The family of the reported patient had performed genetic testing due to the history of intracerebral hemorrhage. Sequence analysis of exon 17 of the APP gene showed the presence of the D694N g.275272 G > A (c.2080 G > A) mutation, which caused the substitution of aspartate for aspargine at position 694 of APP. Alike the discussed patient, this mutation has been found in other family members in an autosomal dominant pattern of inheritance. Contrary to the rest of the family, the reported patient has been diagnosed with multiple sclerosis based on McDonald criteria. Recent studies shed light on the possible link between the APP accumulation and MS progression. It has been indicated that amyloid can prove a vital role in neuroimmunology, whereas the accumulation of APP in the CNS has been suggested to be a potential biomarker for the progression of MS. Moreover, the amyloid positron-emission tomography (amyloid-PET) has been demonstrated to serve as a diagnostic tool for establishing the degree of demyelination and remyelination in MS. Even though, one swallow does not make a summer, this finding would be another step forward in the understanding of pathological processes underlying the pathogenesis of MS.
Collapse
|
12
|
Matías-Guiu J, Matías-Guiu JA, Montero-Escribano P, Barcia JA, Canales-Aguirre AA, Mateos-Diaz JC, Gómez-Pinedo U. Particles Containing Cells as a Strategy to Promote Remyelination in Patients With Multiple Sclerosis. Front Neurol 2020; 11:638. [PMID: 32733364 PMCID: PMC7358567 DOI: 10.3389/fneur.2020.00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The repair of demyelinated lesions is a key objective in multiple sclerosis research. Remyelination fundamentally depends on oligodendrocyte progenitor cells (OPC) reaching the lesion; this is influenced by numerous factors including age, disease progression time, inflammatory activity, and the pool of OPCs available, whether they be NG2 cells or cells derived from neural stem cells. Administering OPCs has been proposed as a potential cell therapy; however, these cells can only be administered directly. This article discusses the potential administration of OPCs encapsulated within hydrogel particles composed of biocompatible biomaterials, via the nose-to-brain pathway. We also discuss conditions for the indication of this therapy, and such related issues as the influence on endogenous remyelination, migration of OPCs to demyelinated areas, and the immune response, given the autoimmune nature of multiple sclerosis. Chitosan and derivatives constitute the most promising biomaterial for this purpose, although these issues must be addressed. In conclusion, this line of research may yield an alternative to the remyelinating drugs currently being studied.
Collapse
Affiliation(s)
- Jorge Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Juan C Mateos-Diaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de 12 Jalisco, CIATEJ, Zapopan, Mexico
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Pytel V, Matias-Guiu JA, Matías-Guiu J, Cortés-Martínez A, Montero P, Moreno-Ramos T, Arrazola J, Carreras JL, Cabrera-Martín MN. Amyloid PET findings in multiple sclerosis are associated with cognitive decline at 18 months. Mult Scler Relat Disord 2020; 39:101926. [PMID: 31918239 DOI: 10.1016/j.msard.2020.101926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To study the clinical, cognitive, and radiological progression of a cohort of patients with MS, taking into account the amyloid PET with 18F-florbetaben analyses. METHODS Twenty-nine patients with MS were assessed with longitudinal structural MRI and a clinical and comprehensive neuropsychological protocol, with a mean interval between assessments of 18 ± 3.31 months. 18F-florbetaben PET was performed at baseline. Uptake was analysed in demyelinating plaques (DWM) and normal-appearing white matter (NAWM). Results were correlated with clinical, cognitive and MRI data. RESULTS Patients with cognitive decline over the follow-up period showed a lower standardised uptake value ratio in NAWM and lower thalamic volume and a higher lesion load in the baseline MRI. Myelin status was correlated with EDSS and cognitive tests mainly evaluating visuospatial function and working memory. Lower uptake in NAWM at baseline was also associated with a growth in white matter lesion volume over time. CONCLUSIONS Lower white matter uptake in amyloid PET is associated with cognitive decline and an increase in white matter lesion volume during the follow-up. Our study suggests that 18F-florbetaben may be a useful biomarker in assessing myelin status in MS, understanding MS pathophysiology, and predicting cognitive outcomes.
Collapse
Affiliation(s)
- Vanesa Pytel
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain.
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Ana Cortés-Martínez
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Paloma Montero
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Health Research Institute (IdISSC) Complutense University of Madrid. Calle Prof. Martín Lagos s/n. 28040. Madrid, Spain
| |
Collapse
|
14
|
CSF β-amyloid predicts early cerebellar atrophy and is associated with a poor prognosis in multiple sclerosis. Mult Scler Relat Disord 2020; 37:101462. [DOI: 10.1016/j.msard.2019.101462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/29/2022]
|
15
|
Feliciano LM, Sávio ALV, de Castro Marcondes JP, da Silva GN, Salvadori DMF. Genetic Alterations in Patients with Two Clinical Phenotypes of Multiple Sclerosis. J Mol Neurosci 2019; 70:120-130. [PMID: 31686392 DOI: 10.1007/s12031-019-01408-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
The etiology of multiple sclerosis (MS) is still not known, but the interaction of genetic, immunological, and environmental factors seem to be involved. This study aimed to investigate genetic alterations and the vitamin D status in patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS). A total of 53 patients (29 RRMS; 24 SPMS) and 25 healthy subjects were recruited to evaluate the micronucleated cell (MNC) frequency and nuclear abnormalities in the buccal mucosa, gene expression profiling in mononuclear cells, and plasmatic vitamin D concentration in the blood. Results showed a higher frequency of cells with karyorrhexis (SPMS) and lower frequencies of nuclear pyknosis (RRMS and SPMS) and karyolysis (SPMS) in patients with MS. Significant increase in the frequency of MNC was detected in the buccal mucosa of RRMS and SPMS patients. HIF1A, IL13, IL18, MYC, and TNF were differentially expressed in MS patients, and APP was overexpressed in cells of RRMS compared to SPMS patients. No relationship was observed between vitamin D level and the differentially expressed genes. In conclusion, the cytogenetic alterations in the buccal mucosa can be important indicators of genetic instability and degenerative processes in patients with MS. Furthermore, our data introduced novel biomarkers associated with the molecular pathogenesis of MS.
Collapse
|
16
|
Nguyen KV. β-Amyloid precursor protein (APP) and the human diseases. AIMS Neurosci 2019; 6:273-281. [PMID: 32341983 PMCID: PMC7179352 DOI: 10.3934/neuroscience.2019.4.273] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Several pathophysiological functions of the human β-amyloid precursor protein (APP) have been recently proposed in different human diseases such as neurodevelopmental and neurodegenerative disorders including rare diseases such as autism, fragile X syndrome, amyotrophic lateral sclerosis, multiple sclerosis, Lesch-Nyhan disease; common and complex disorders such as Alzheimer's disease; metabolic disorders such as diabetes; and also cancer. APP as well as all of its proteolytic fragments including the amyloid-β (Aβ) peptide, are part of normal physiology. The targeting of the components of APP proteolytic processing as a pharmacologic strategy will not be without consequences. Recent research results highlight the impact of alternative splicing (AS) process on human disease, and may provide new directions for the research on the impact of the human APP on human diseases. The identification of molecules capable of correcting and/or inhibiting pathological splicing events is therefore an important issue for future therapeutic approaches. To this end, the defective APP-mRNA isoform responsible for the disease in cells and tissues appears as an ideal target for epigenetic therapeutic intervention and antisense drugs are potential treatment.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, Building CTF, Room C-103, 214 Dickinson Street, San Diego, CA 92103-8467, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, San Diego, La Jolla, CA 92093-0830, USA
| |
Collapse
|
17
|
[ 18F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur J Nucl Med Mol Imaging 2019; 47:366-378. [PMID: 31637481 PMCID: PMC6974490 DOI: 10.1007/s00259-019-04533-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
Abstract
Purpose We evaluated myelin changes throughout the central nervous system in Multiple Sclerosis (MS) patients by using hybrid [18F]florbetapir PET-MR imaging. Methods We included 18 relapsing-remitting MS patients and 12 healthy controls. Each subject performed a hybrid [18F]florbetapir PET-MR and both a clinical and cognitive assessment. [18F]florbetapir binding was measured as distribution volume ratio (DVR), through the Logan graphical reference method and the supervised cluster analysis to extract a reference region, and standard uptake value (SUV) in the 70–90 min interval after injection. The two quantification approaches were compared. We also evaluated changes in the measures derived from diffusion tensor imaging and arterial spin labeling. Results [18F]florbetapir DVRs decreased from normal-appearing white matter to the centre of T2 lesion (P < 0.001), correlated with fractional anisotropy and with mean, axial and radial diffusivity within T2 lesions (coeff. = −0.15, P < 0.001, coeff. = −0.12, P < 0.001 and coeff. = −0.16, P < 0.001, respectively). Cerebral blood flow was reduced in white matter damaged areas compared to white matter in healthy controls (−10.9%, P = 0.005). SUV70–90 and DVR are equally able to discriminate between intact and damaged myelin (area under the curve 0.76 and 0.66, respectively; P = 0.26). Conclusion Our findings demonstrate that [18F]florbetapir PET imaging can measure in-vivo myelin damage in patients with MS. Demyelination in MS is not restricted to lesions detected through conventional MRI but also involves the normal appearing white matter. Although longitudinal studies are needed, [18F]florbetapir PET imaging may have a role in clinical settings in the management of MS patients.
Collapse
|
18
|
Juźwik CA, S Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182:101664. [PMID: 31356849 DOI: 10.1016/j.pneurobio.2019.101664] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
While the root causes for individual neurodegenerative diseases are distinct, many shared pathological features and mechanisms contribute to neurodegeneration across diseases. Altered levels of microRNAs, small non-coding RNAs involved in post transcriptional regulation of gene expression, are reported for numerous neurodegenerative diseases. Yet, comparison between diseases to uncover commonly dysregulated microRNAs during neurodegeneration in general is lagging. We performed a systematic review of peer-reviewed publications describing differential microRNA expression in neurodegenerative diseases and related animal models. We compiled the results from studies covering the prevalent neurodegenerative diseases in the literature: Alzheimer's disease, amyotrophic lateral sclerosis, age-related macular degeneration, ataxia, dementia, myotonic dystrophy, epilepsy, glaucoma, Huntington's disease, multiple sclerosis, Parkinson's disease, and prion disorders. MicroRNAs which were dysregulated most often in these diseases and their models included miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p, miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-3p. Common pathways targeted by these predominant miRNAs were identified and revealed great functional overlap across diseases. We also identified a strong role for each microRNA in both the neural and immune components of diseases. microRNAs regulate broad networks of genes and identifying microRNAs commonly dysregulated across neurodegenerative diseases could cultivate novel hypotheses related to common molecular mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Camille A Juźwik
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Sienna S Drake
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Yang Zhang
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Nicolas Paradis-Isler
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandra Sylvester
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandre Amar-Zifkin
- McGill University Health Centre- Medical Libraries, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| | - Chelsea Douglas
- Program Manager, Plotly Technologies Inc, 5555 Gaspe Avenue #118, Montréal, QC, H2T 2A3, Canada.
| | - Barbara Morquette
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Craig S Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Alyson E Fournier
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
19
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
20
|
Nguyen KV. Potential epigenomic co-management in rare diseases and epigenetic therapy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:752-780. [PMID: 31079569 DOI: 10.1080/15257770.2019.1594893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to highlight the impact of the alternative splicing process on human disease. Epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced. The recent progress in the field of epigenetics has important implications for the study of rare diseases. The role of epigenetics in rare diseases is a key issue in molecular physiology and medicine because not only rare diseases can benefit from epigenetic research, but can also provide useful principles for other common and complex disorders such as cancer, cardiovascular, type 2 diabetes, obesity, and neurological diseases. Predominantly, epigenetic modifications include DNA methylation, histone modification, and RNA-associated silencing. These modifications in the genome regulate numerous cellular activities. Disruption of epigenetic regulation process can contribute to the etiology of numerous diseases during both prenatal and postnatal life. Here, I discuss current knowledge about this matter including some current epigenetic therapies and future directions in the field by emphasizing on the RNA-based therapy via antisense oligonucleotides to correct splicing defects.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics, UC San Diego School of Medicine , La Jolla , CA , USA
| |
Collapse
|
21
|
Araman C, van Gent ME, Meeuwenoord NJ, Heijmans N, Marqvorsen MHS, Doelman W, Faber BW, 't Hart BA, Van Kasteren SI. Amyloid-like Behavior of Site-Specifically Citrullinated Myelin Oligodendrocyte Protein (MOG) Peptide Fragments inside EBV-Infected B-Cells Influences Their Cytotoxicity and Autoimmunogenicity. Biochemistry 2019; 58:763-775. [PMID: 30513201 PMCID: PMC6374747 DOI: 10.1021/acs.biochem.8b00852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Multiple
sclerosis (MS) is an autoimmune disorder manifested via
chronic inflammation, demyelination, and neurodegeneration inside
the central nervous system. The progressive phase of MS is characterized
by neurodegeneration, but unlike classical neurodegenerative diseases,
amyloid-like aggregation of self-proteins has not been documented.
There is evidence that citrullination protects an immunodominant peptide
of human myelin oligodendrocyte glycoprotein (MOG34–56) against destructive processing in Epstein-Barr virus-infected B-lymphocytes
(EBV-BLCs) in marmosets and causes exacerbation of ongoing MS-like
encephalopathies in mice. Here we collected evidence that citrullination
of MOG can also lead to amyloid-like behavior shifting the disease
pathogenesis toward neurodegeneration. We observed that an immunodominant
MOG peptide, MOG35–55, displays amyloid-like behavior
upon site-specific citrullination at positions 41, 46, and/or 52.
These amyloid aggregates are shown to be toxic to the EBV-BLCs and
to dendritic cells at concentrations favored for antigen presentation,
suggesting a role of amyloid-like aggregation in the pathogenesis
of progressive MS.
Collapse
Affiliation(s)
- Can Araman
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Miriam E van Gent
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Nico J Meeuwenoord
- Leiden Institute of Chemistry and Department of Bioorganic Synthesis , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Nicole Heijmans
- Department of Immunobiology , Biomedical Primate Research Centre , 2288 GJ Rijswijk , The Netherlands
| | - Mikkel H S Marqvorsen
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Ward Doelman
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Bart W Faber
- Department of Parasitology , Biomedical Primate Research Centre , 2288 GJ Rijswijk , The Netherlands
| | - Bert A 't Hart
- Department of Immunobiology , Biomedical Primate Research Centre , 2288 GJ Rijswijk , The Netherlands.,Department of Neuroscience , University of Groningen, University Medical Centre , 9700 AB Groningen , The Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| |
Collapse
|
22
|
Luczynski P, Laule C, Hsiung GYR, Moore GW, Tremlett H. Coexistence of Multiple Sclerosis and Alzheimer's disease: A review. Mult Scler Relat Disord 2019; 27:232-238. [DOI: 10.1016/j.msard.2018.10.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/21/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
|
23
|
Morbelli S, Bauckneht M, Capitanio S, Pardini M, Roccatagliata L, Nobili F. A new frontier for amyloid PET imaging: multiple sclerosis. Eur J Nucl Med Mol Imaging 2018; 46:276-279. [DOI: 10.1007/s00259-018-4232-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
|
24
|
Pietroboni AM, Carandini T, Colombi A, Mercurio M, Ghezzi L, Giulietti G, Scarioni M, Arighi A, Fenoglio C, De Riz MA, Fumagalli GG, Basilico P, Serpente M, Bozzali M, Scarpini E, Galimberti D, Marotta G. Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes. Eur J Nucl Med Mol Imaging 2018; 46:280-287. [PMID: 30343433 DOI: 10.1007/s00259-018-4182-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE The disease course of multiple sclerosis (MS) is unpredictable, and reliable prognostic biomarkers are needed. Positron emission tomography (PET) with β-amyloid tracers is a promising tool for evaluating white matter (WM) damage and repair. Our aim was to investigate amyloid uptake in damaged (DWM) and normal-appearing WM (NAWM) of MS patients, and to evaluate possible correlations between cerebrospinal fluid (CSF) β-amyloid1-42 (Aβ) levels, amyloid tracer uptake, and brain volumes. METHODS Twelve MS patients were recruited and divided according to their disease activity into active and non-active groups. All participants underwent neurological examination, neuropsychological testing, lumbar puncture, brain magnetic resonance (MRI) imaging, and 18F-florbetapir PET. Aβ levels were determined in CSF samples from all patients. MRI and PET images were co-registered, and mean standardized uptake values (SUV) were calculated for each patient in the NAWM and in the DWM. To calculate brain volumes, brain segmentation was performed using statistical parametric mapping software. Nonparametric statistical analyses for between-group comparisons and regression analyses were conducted. RESULTS We found a lower SUV in DWM compared to NAWM (p < 0.001) in all patients. Decreased NAWM-SUV was observed in the active compared to non-active group (p < 0.05). Considering only active patients, NAWM volume correlated with NAWM-SUV (p = 0.01). Interestingly, CSF Aβ concentration was a predictor of both NAWM-SUV (r = 0.79; p = 0.01) and NAWM volume (r = 0.81, p = 0.01). CONCLUSIONS The correlation between CSF Aβ levels and NAWM-SUV suggests that the predictive role of β-amyloid may be linked to early myelin damage and may reflect disease activity and clinical progression.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy. .,University of Milan, Milan, Italy. .,Dino Ferrari Center, Milan, Italy.
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Annalisa Colombi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Matteo Mercurio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Laura Ghezzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | | | - Marta Scarioni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | | | - Milena A De Riz
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Giorgio G Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Paola Basilico
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | | | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Giorgio Marotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy
| |
Collapse
|
25
|
Lötsch J, Schiffmann S, Schmitz K, Brunkhorst R, Lerch F, Ferreiros N, Wicker S, Tegeder I, Geisslinger G, Ultsch A. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci Rep 2018; 8:14884. [PMID: 30291263 PMCID: PMC6173715 DOI: 10.1038/s41598-018-33077-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Based on increasing evidence suggesting that MS pathology involves alterations in bioactive lipid metabolism, the present analysis was aimed at generating a complex serum lipid-biomarker. Using unsupervised machine-learning, implemented as emergent self-organizing maps of neuronal networks, swarm intelligence and Minimum Curvilinear Embedding, a cluster structure was found in the input data space comprising serum concentrations of d = 43 different lipid-markers of various classes. The structure coincided largely with the clinical diagnosis, indicating that the data provide a basis for the creation of a biomarker (classifier). This was subsequently assessed using supervised machine-learning, implemented as random forests and computed ABC analysis-based feature selection. Bayesian statistics-based biomarker creation was used to map the diagnostic classes of either MS patients (n = 102) or healthy subjects (n = 301). Eight lipid-markers passed the feature selection and comprised GluCerC16, LPA20:4, HETE15S, LacCerC24:1, C16Sphinganine, biopterin and the endocannabinoids PEA and OEA. A complex classifier or biomarker was developed that predicted MS at a sensitivity, specificity and accuracy of approximately 95% in training and test data sets, respectively. The present successful application of serum lipid marker concentrations to MS data is encouraging for further efforts to establish an MS biomarker based on serum lipidomics.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Katja Schmitz
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe-University Hospital, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Lerch
- DataBionics Research Group, University of Marburg, Hans - Meerwein - Straße 22, 35032, Marburg, Germany
| | - Nerea Ferreiros
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Wicker
- Occupational Health Service, University Hospital Frankfurt, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Hans - Meerwein - Straße 22, 35032, Marburg, Germany
| |
Collapse
|
26
|
Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem 2018; 158:463-477. [PMID: 30243151 DOI: 10.1016/j.ejmech.2018.09.031] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in elderly people. Considering the multifactorial nature of AD, the concept of multi-target-directed ligands (MTDLs) has recently emerged as a new strategy for designing therapeutic agents on AD. MTDLs are confirmed to simultaneously affect diverse targets which contribute to etiology of AD. As the most potent approved drug, donepezil affects various events of AD, like inhibiting cholinesterases activities, anti-Aβ aggregation, anti-oxidative stress et al. Modifications of donepezil or hybrids with pharmacophores of donepezil in recent five years are summarized in this article. On the basis of case studies, our concerns and opinions about development of donepezil derivatives, designing of MTDLs, and perspectives for AD treatments are discussed in final part.
Collapse
|
27
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
28
|
Mørkholt AS, Kastaniegaard K, Trabjerg MS, Gopalasingam G, Niganze W, Larsen A, Stensballe A, Nielsen S, Nieland JD. Identification of brain antigens recognized by autoantibodies in experimental autoimmune encephalomyelitis-induced animals treated with etomoxir or interferon-β. Sci Rep 2018; 8:7092. [PMID: 29728570 PMCID: PMC5935685 DOI: 10.1038/s41598-018-25391-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 11/08/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease, where chronic inflammation plays an essential role in its pathology. A feature of MS is the production of autoantibodies stimulated by an altered-peptide-ligand response and epitope spreading, resulting in loss of tolerance for self-proteins. The involvement of autoantibodies in MS pathogenesis has been suggested to initiate and drive progression of inflammation; however, the etiology of MS remains unknown. The effect of etomoxir and interferon-β (IFN-β) was examined in an experimental-autoimmune-encephalomyelitis (EAE) model of MS. Moreover, the impact of etomoxir and IFN-β on recognition of brain proteins in serum from EAE rats was examined with the purpose of identifying the autoantibody reactivities involved in MS. Animals treated with etomoxir on day 1 exhibited a statistically significantly lower disease score than animals treated with IFN-β (on day 1 or 5) or placebo. Etomoxir treatment on day 5 resulted in a significantly lower disease score than IFN-β treatment on day 1. After disease induction antibodies was induced to a broad pallet of antigens in the brain. Surprisingly, by blocking CPT1 and therewith lipid metabolism several alterations in the antibody response was observed suggesting that autoantibodies play a role in the EAE animal model.
Collapse
Affiliation(s)
| | | | | | - Gopana Gopalasingam
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Wanda Niganze
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Nieland
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
29
|
Tse KH, Cheng A, Ma F, Herrup K. DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 2018; 14:664-679. [PMID: 29328926 PMCID: PMC5938117 DOI: 10.1016/j.jalz.2017.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In looking for novel non-amyloid-based etiologies for Alzheimer's disease, we explore the hypothesis that age-related myelin loss is an attractive explanation for age-associated cognitive decline and dementia. METHODS We performed a meta-analysis of data in the National Alzheimer's Coordinating Center database accompanied by quantitative histopathology of myelin and oligodendrocytes (OLs) in frontal cortices of 24 clinically characterized individuals. Pathological findings were further validated in an Alzheimer's disease mouse model and in culture. RESULTS Myelin lesions increased with cognitive impairment in an amyloid-independent fashion with signs of degeneration appearing before neuronal loss. Myelinating OLs in the gray matter showed greater vulnerability than those in white matter, and the degenerative changes correlated with evidence of DNA damage. Similar results were found in myelinating OL cultures where DNA damage caused aberrant OL cell cycle re-entry and death. DISCUSSION We present the first comprehensive analysis of the cell biology of early myelin loss in sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Aifang Cheng
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fulin Ma
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
30
|
Matías-Guíu J, Oreja-Guevara C, Matias-Guiu J, Gomez-Pinedo U. Vitamin D and remyelination in multiple sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases. PLoS One 2018. [PMID: 29518107 PMCID: PMC5843269 DOI: 10.1371/journal.pone.0193867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cognitive impairments of different aetiology share alterations in iron and lipid homeostasis with mutual relationships. Since iron and cholesterol accumulation impact on neurodegenerative disease, the associated gene variants are appealing candidate targets for risk and disease progression assessment. In this light, we explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes and in the main lipoprotein transporter gene (APOE) in a cohort of 765 patients with dementia of different origin: Alzheimer’s disease (AD) n = 276; vascular dementia (VaD), n = 255; mild cognitive impairment (MCI), n = 234; and in normal controls (n = 1086). In details, four genes of iron homeostasis (Hemochromatosis (HFE: C282Y, H63D), Ferroportin (FPN1: -8CG), Hepcidin (HAMP: -582AG), Transferrin (TF: P570S)), and the three major alleles of APOE (APOE2, APOE3, APOE4) were analyzed to explore causative interactions and synergies. In single analysis, HFE 282Y allele yielded a 3-fold risk reduction in the whole cohort of patients (P<0.0001), confirmed in AD and VaD, reaching a 5-fold risk reduction in MCI (P = 0.0019). The other iron SNPs slightly associated with risk reduction whereas APOE4 allele resulted in increased risk, reaching more than 7-fold increased risk in AD homozygotes (P = 0.001), confirmed to a lower extent in VaD and MCI (P = 0.038 and P = 0.013 respectively) as well as in the whole group (P<0.0001). Comparisons of Mini Mental State Examination (MMSE) among AD showed appreciable lowering in APOE4 carriers (P = 0.038), confirmed in the whole cohort of patients (P = 0.018). In interaction analysis, the HFE 282Y allele completely extinguished the APOE4 allele associated risk. Conversely, the coexistence in patients of a substantial number of iron SNPs accrued the APOE4 detrimental effect on MMSE. Overall, the analysis highlighted how a specific iron-allele burden, defined as different combinations of iron gene variants, might have different effects on cognitive impairment and might modulate the effects of established genetic risk factors such as APOE4. Our results suggest that established genetic risk factors might be affected by specific genetic backgrounds, making patients differently suited to manage iron accumulation adding new genetic insights in neurodegeneration. The recently recognized interconnections between iron and lipids, suggest that these pathways might share more than expected. We therefore extended to additional iron gene variants the newly proposed influencing mechanisms that HFE gene has on cholesterol metabolism. Our results have a strong translational potential promoting new pharmacogenetics studies on therapeutic target identification aimed at optimally tuning brain iron levels.
Collapse
|
32
|
Abstract
More than 45 million people worldwide have Alzheimer's disease (AD), a deterioration of memory and other cognitive domains that leads to death within 3 to 9 years after diagnosis. The principal risk factor for AD is age. As the aging population increases, the prevalence will approach 131 million cases worldwide in 2050. AD is therefore a global problem creating a rapidly growing epidemic and becoming a major threat to healthcare in our societies. It has been more than 20 years since it was first proposed that the neurodegeneration in AD may be caused by deposition of amyloid-β (Aβ) peptides in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ peptides, resulting from a chronic imbalance between Aβ production and Aβ clearance in the brain, is the primary influence driving AD pathogenesis. Current available medications appear to be able to produce moderate symptomatic benefits but not to stop disease progression. The search for biomarkers as well as novel therapeutic approaches for AD has been a major focus of research. Recent findings, however, show that neuronal-injury biomarkers are independent of Aβ suggesting epigenetic modifications, gene-gene and/or gene-environment interactions in the disease etiology, and calling for reconsideration of the pathological cascade and assessment of alternative therapeutic strategies. In addition, recent research results regarding the expression of the β-amyloid precursor protein (APP) gene resulting in the presence of various APP-mRNA isoforms and their quantification, especially for identifying the most abundant one that may decisive for the normal status or disease risk, have been reported. As such, a more complete understanding of AD pathogenesis will likely require greater insights into the physiological function of the β-amyloid precursor protein (APP).
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, Building CTF, Room C-103, 214 Dickinson Street, San Diego, CA 92103-8467, USA.,Department of Pediatrics, University of California, San Diego, School of Medicine, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Matías-Guiu JA, Cabrera-Martín MN, Cortés-Martínez A, Pytel V, Moreno-Ramos T, Oreja-Guevara C, Carreras JL, Matías-Guiu J. Amyloid PET in pseudotumoral multiple sclerosis. Mult Scler Relat Disord 2017. [DOI: 10.1016/j.msard.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Matías-Guiu JA, Guerrero-Márquez C, Cabrera-Martín MN, Gómez-Pinedo U, Romeral M, Mayo D, Porta-Etessam J, Moreno-Ramos T, Carreras JL, Matías-Guiu J. Amyloid- and FDG-PET in sporadic Creutzfeldt-Jakob disease: Correlation with pathological prion protein in neuropathology. Prion 2017; 11:205-213. [PMID: 28509609 DOI: 10.1080/19336896.2017.1314427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The role of positron emission tomography (PET) in Creutzfeldt-Jakob disease is less defined than in other neurodegenerative diseases. We studied the correlation between the uptake of 18F-florbetaben and 18F-fluorodeoxyglucose with pathological prion protein deposition in histopathology in a case. METHODS A patient with 80 y old with a rapid neurological deterioration with a confirmed diagnosis of CJD was studied. PET and MRI studies were performed between 13-20 d before the death. A region of interest analysis was performed using Statistical Parametric Mapping. RESULTS MRI showed atrophy with no other alterations. FDG-PET showed extensive areas of hypometabolism including left frontoparietal lobes as well as bilateral thalamus. Correlation between uptake of 18F-florbetaben and pathological prion protein deposition was r = 0.786 (p < 0.05). Otherwise, correlation between uptake of 18F-FDG and pathological prion protein was r = 0.357 (p = 0.385). Immunohistochemistry with β-amyloid did not show amyloid deposition or neuritic plaques. CONCLUSIONS Our study supports the use of FDG-PET in the assessment of CJD. FDG-PET may be especially useful in cases of suspected CJD and negative MRI. Furthermore, this case report provides more evidence about the behavioral of amyloid tracers, and the possibility of a low-affinity binding to other non-amyloid proteins, such as the pathological prion protein, is discussed.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - Carmen Guerrero-Márquez
- b Laboratory of Neuropathology, Brain Bank, Department of Pathology , Hospital Universitario Fundación Alcorcón , Madrid , Spain
| | - María Nieves Cabrera-Martín
- c Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - Ulises Gómez-Pinedo
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain.,d Laboratory of Regenerative Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - María Romeral
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - Diego Mayo
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - Jesús Porta-Etessam
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - Teresa Moreno-Ramos
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - José Luis Carreras
- c Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| | - Jorge Matías-Guiu
- a Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC) , Universidad Complutense , Madrid , Spain
| |
Collapse
|
35
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
36
|
DellaValle B, Brix GS, Brock B, Gejl M, Landau AM, Møller A, Rungby J, Larsen A. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats. Front Pharmacol 2016; 7:433. [PMID: 27917122 PMCID: PMC5114298 DOI: 10.3389/fphar.2016.00433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11) or if exceeding humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase (MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were determined. Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP (p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment (p = 0.09). Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1 receptor agonists should be investigated further as a potential therapy for MS.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Centre of Medical Parasitology, Department of Clinical Microbiology, Copenhagen University HospitalCopenhagen, Denmark
| | - Gitte S Brix
- Department of Biomedicine/Pharmacology, Aarhus University Aarhus, Denmark
| | - Birgitte Brock
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Clinical Biochemistry and Department of Clinical Medicine, Aarhus University Hospital, Aarhus UniversityAarhus, Denmark
| | - Michael Gejl
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Clinical Biochemistry and Department of Clinical Medicine, Aarhus University Hospital, Aarhus UniversityAarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Aarhus UniversityAarhus, Denmark; Centre For Functionally Integrative Neuroscience, Aarhus UniversityAarhus, Denmark
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Aarhus UniversityAarhus, Denmark; Centre For Functionally Integrative Neuroscience, Aarhus UniversityAarhus, Denmark
| | - Jørgen Rungby
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Endocrinology, Bispebjerg University HospitalCopenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine/Pharmacology, Aarhus University Aarhus, Denmark
| |
Collapse
|
37
|
Pietroboni AM, Schiano di Cola F, Scarioni M, Fenoglio C, Spanò B, Arighi A, Cioffi SM, Oldoni E, De Riz MA, Basilico P, Calvi A, Fumagalli GG, Triulzi F, Galimberti D, Bozzali M, Scarpini E. CSF β-amyloid as a putative biomarker of disease progression in multiple sclerosis. Mult Scler 2016; 23:1085-1091. [PMID: 27754941 DOI: 10.1177/1352458516674566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neurodegeneration plays a major role in determining disability in multiple sclerosis (MS) patients. Hence, there is increasing need to identify reliable biomarkers, which could serve as prognostic measure of disease progression. OBJECTIVES To assess whether cerebrospinal fluid (CSF) tau and β-amyloid (Aβ) levels were altered in newly diagnosed MS patients and correlated with disability. Moreover, we investigated whether these CSF biomarkers associate with macroscopic brain tissue damage measures. METHODS CSF Aβ and tau levels were determined by enzyme-linked immunosorbent assay in CSF samples from 48 newly diagnosed MS patients, followed-up clinically for 3 years by recording their Expanded Disability Status Scale score at 6-month intervals, and 45 controls. All patients underwent magnetic resonance imaging at baseline and at the end of follow-up to quantify their lesion load (LL). RESULTS CSF Aβ levels were significantly reduced in patients compared to controls ( p < 0.001). Lower CSF Aβ levels at baseline were a disability predictor at 3-year follow-up ( p = 0.009). CSF tau levels correlated with T2- and T1-LL ( p < 0.001). CONCLUSION CSF Aβ reduction is a promising biomarker of neurodegeneration and may predict patients' clinical outcome. Therefore, CSF Aβ should be considered as a potential biomarker of prognostic value.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Schiano di Cola
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Scarioni
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Spanò
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Arighi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Mg Cioffi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuela Oldoni
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Milena A De Riz
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Basilico
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Calvi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio G Fumagalli
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Neuroradiology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elio Scarpini
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, "Dino Ferrari" Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
38
|
Matías-Guíu J, Oreja-Guevara C, Matias-Guiu JA, Gomez-Pinedo U. Vitamin D and remyelination in multiple sclerosis. Neurologia 2016; 33:177-186. [PMID: 27321170 DOI: 10.1016/j.nrl.2016.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination. DEVELOPMENT The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells. CONCLUSIONS VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency.
Collapse
Affiliation(s)
- J Matías-Guíu
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España.
| | - C Oreja-Guevara
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España
| | - J A Matias-Guiu
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España
| | - U Gomez-Pinedo
- Servicio de Neurología, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense, IdiSSC, Madrid, España
| |
Collapse
|