1
|
Yu F, Liu D, Ma X, Liu Y, Cai L, Zhao E, Huang Z, Zhang Z, Zhang T, Qiao P, Zheng W, Guo C, Qian L, Ren P, Wang Z. Dobutamine-induced alterations in internal carotid artery blood flow and cerebral blood flow in healthy adults. Brain Res Bull 2025; 221:111204. [PMID: 39793667 DOI: 10.1016/j.brainresbull.2025.111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
PURPOSE Dobutamine, a sympathomimetic agent, is widely used clinically, influencing cardiac output, heart rate (HR), and blood pressure (BP), which may impact cerebral blood flow (CBF), critical for brain metabolism. However, the effects of dobutamine on CBF and internal carotid artery (ICA) blood flow remain unclear, with contradictory reported in both clinical and animal studies. It is necessary to investigate the effects of dobutamine on cervical and cerebral hemodynamics. This study aimed to evaluate the effects of dobutamine infusion on ICA blood flow and CBF, explore their relationship, and identify factors influencing CBF to facilitate timely monitoring in clinical practice. METHODS Forty-eight healthy volunteers underwent physiological assessment, ICA ultrasound, and brain magnetic resonance imaging (MRI) data before and after the administration of dobutamine. Paired t and Wilcoxon signed-rank tests were used to analyze changes, while logistic regression explored associations between hemodynamic factors and CBF. RESULTS Dobutamine infusion significantly increased HR, respiration rate, systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure, while blood oxygen remained stable. Compared with those in the resting state, the peak systolic velocity (Vs), resistance index, pulsatility index, and systolic/diastolic ratio (S/D) increased, whereas end-diastolic velocity (Vd) decreased. ICA diameter and mean velocity showed no significant changes. CBF significantly decreased in the anterior and middle cerebral arteries. Logistic regression identified SBP, DBP, and S/D difference as key factors associated with CBF reduction. CONCLUSIONS Dobutamine altered ICA hemodynamics and reduced CBF in anterior and middle cerebral arteries. Real-time ICA ultrasound monitoring provides valuable guidance during clinical use.
Collapse
Affiliation(s)
- Fengxia Yu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dong Liu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xia Ma
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yawen Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Precision and Intelligence Medical Imaging Lab, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linkun Cai
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Erwei Zhao
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zixu Huang
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Zhang
- China Astronaut Research and Training Center, Beijing 100086, China
| | - Tingting Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - PengGang Qiao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Zheng
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Precision and Intelligence Medical Imaging Lab, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Svedung Wettervik T, Engquist H, Hånell A, Howells T, Rostami E, Ronne-Engström E, Lewén A, Enblad P. Cerebral Microdialysis Monitoring of Energy Metabolism: Relation to Cerebral Blood Flow and Oxygen Delivery in Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2023; 35:384-393. [PMID: 35543615 DOI: 10.1097/ana.0000000000000854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
INTRODUCTION In this study, we investigated the roles of cerebral blood flow (CBF) and cerebral oxygen delivery (CDO 2 ) in relation to cerebral energy metabolism after aneurysmal subarachnoid hemorrhage (aSAH). METHODS Fifty-seven adult aSAH patients treated on the neurointensive care unit at Uppsala, Sweden between 2012 and 2020, with at least 1 xenon-enhanced computed tomography (Xe-CT) scan in the first 14 days after ictus and concurrent microdialysis (MD) monitoring, were included in this retrospective study. CBF was measured globally and focally (around the MD catheter) with Xe-CT, and CDO 2 calculated. Cerebral energy metabolites were measured using MD. RESULTS Focal ischemia (CBF <20 mL/100 g/min around the MD catheter was associated with lower median [interquartile range]) MD-glucose (1.2 [0.7 to 2.2] mM vs. 2.3 [1.3 to 3.5] mM; P =0.05) and higher MD-lactate-pyruvate (LPR) ratio (34 [29 to 66] vs. 25 [21 to 32]; P =0.02). A compensated/normal MD pattern (MD-LPR <25) was observed in the majority of patients (22/23, 96%) without focal ischemia, whereas 4 of 11 (36%) patients with a MD pattern of poor substrate supply (MD-LPR >25, MD-pyruvate <120 µM) had focal ischemia as did 5 of 20 (25%) patients with a pattern of mitochondrial dysfunction (MD-LPR >25, MD-pyruvate >120 µM) ( P =0.04). Global CBF and CDO 2 , and focal CDO 2 , were not associated with the MD variables. CONCLUSIONS While MD is a feasible tool to study cerebral energy metabolism, its validity is limited to a focal area around the MD catheter. Cerebral energy disturbances were more related to low CBF than to low CDO 2 . Considering the high rate of mitochondrial dysfunction, treatments that increase CBF but not CDO 2 , such as hemodilution, may still benefit glucose delivery to drive anaerobic metabolism.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Anders Lewén
- Section of Neurosurgery, Department of Neuroscience
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience
| |
Collapse
|
3
|
Intracranial pressure- and cerebral perfusion pressure threshold-insults in relation to cerebral energy metabolism in aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 2022; 164:1001-1014. [PMID: 35233663 PMCID: PMC8967735 DOI: 10.1007/s00701-022-05169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Background The aim was to investigate the association between intracranial pressure (ICP)- and cerebral perfusion pressure (CPP) threshold-insults in relation to cerebral energy metabolism and clinical outcome after aneurysmal subarachnoid hemorrhage (aSAH). Methods In this retrospective study, 75 aSAH patients treated in the neurointensive care unit, Uppsala, Sweden, 2008–2018, with ICP and cerebral microdialysis (MD) monitoring were included. The first 10 days were divided into early (day 1–3), early vasospasm (day 4–6.5), and late vasospasm phase (day 6.5–10). The monitoring time (%) of ICP insults (> 20 mmHg and > 25 mmHg), CPP insults (< 60 mmHg, < 70 mmHg, < 80 mmHg, and < 90 mmHg), and autoregulatory CPP optimum (CPPopt) insults (∆CPPopt = CPP-CPPopt < − 10 mmHg, ∆CPPopt > 10 mmHg, and within the optimal interval ∆CPPopt ± 10 mmHg) were calculated in each phase. Results Higher percent of ICP above the 20 mmHg and 25 mmHg thresholds correlated with lower MD-glucose and increased MD-lactate-pyruvate ratio (LPR), particularly in the vasospasm phases. Higher percentage of CPP below all four thresholds (60/70/80//90 mmHg) also correlated with a MD pattern of poor cerebral substrate supply (MD-LPR > 40 and MD-pyruvate < 120 µM) in the vasospasm phase and higher burden of CPP below 60 mmHg was independently associated with higher MD-LPR in the late vasospasm phase. Higher percentage of CPP deviation from CPPopt did not correlate with worse cerebral energy metabolism. Higher burden of CPP-insults below all fixed thresholds in both vasospasm phases were associated with worse clinical outcome. The percentage of ICP-insults and CPP close to CPPopt were not associated with clinical outcome. Conclusions Keeping ICP below 20 mmHg and CPP at least above 60 mmHg may improve cerebral energy metabolism and clinical outcome. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-022-05169-y.
Collapse
|
4
|
Dmytriw AA, Bickford S, Pezeshkpour P, Ha W, Amirabadi A, Dibas M, Kitamura LA, Vidarsson L, Pulcine E, Muthusami P. Rotational Vertebrobasilar Insufficiency: Is There a Physiological Spectrum? Phase-Contrast Magnetic Resonance Imaging Quantification in Healthy Volunteers. Pediatr Neurol 2022; 128:58-64. [PMID: 35101804 DOI: 10.1016/j.pediatrneurol.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Some cases of cerebral ischemia have been attributed to dynamic flow limitation in neck vessels. It however remains unknown whether this represents the extreme end of a physiological response. METHODS Eighteen healthy volunteers were recruited to this prospective study. Cervical blood flow (ml/min/m2) was assessed using phase-contrast MRI, and cerebral perfusion ratios were assessed using arterial spin labeling perfusion at neutral position, predefined head rotations, as well as flexion and extension. Inter-reader agreements were assessed using intraclass correlation coefficient. RESULTS The mean age was 38.6 ± 10.8 (range = 22-56) years, for five male participants and 13 females. The means for height and weight were 168 cm and 73.2 kg, respectively. There were no significant differences in individual arterial blood flow with change in head position (P > 0.05). Similarly, the repeated-measures analysis of variance test demonstrated no significant difference in perfusion ratios in relation to head position movement (P > 0.05). Inter-reader agreement was excellent (intraclass correlation coefficient = 0.97). CONCLUSIONS There is neither significant change in either individual cervical arterial blood flow nor cerebral perfusion within the normal physiological/anatomical range of motion in healthy individuals. It is therefore reasonable to conclude that any such hemodynamic change identified in a patient with ischemic stroke be considered causative.
Collapse
Affiliation(s)
- Adam A Dmytriw
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada.
| | - Suzanne Bickford
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Parneyan Pezeshkpour
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Winston Ha
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Afsaneh Amirabadi
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Dibas
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lee Ann Kitamura
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Logi Vidarsson
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Pulcine
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Prakash Muthusami
- Divisions of Neuroradiology and Image Guided Therapy, Department of Diagnostic Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Forsse A, Nielsen TH, Mølstrøm S, Hjelmborg J, Nielsen KS, Nygaard KH, Yilmaz S, Nordström CH, Poulsen FR. A Prospective Observational Feasibility Study of Jugular Bulb Microdialysis in Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:241-255. [PMID: 31845174 DOI: 10.1007/s12028-019-00888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cerebral metabolic perturbations are common in aneurysmal subarachnoid hemorrhage (aSAH). Monitoring cerebral metabolism with intracerebral microdialysis (CMD) allows early detection of secondary injury and may guide decisions on neurocritical care interventions, affecting outcome. However, CMD is a regional measuring technique that is influenced by proximity to focal lesions. Continuous microdialysis of the cerebral venous drainage may provide information on global cerebral metabolism relevant for the care of aSAH patients. This observational study aimed to explore the feasibility of jugular bulb microdialysis (JBMD) in aSAH and describe the output characteristics in relation to conventional multimodal monitoring. METHODS Patients with severe aSAH were included at admission or after in-house deterioration when local clinical guidelines prompted extended multimodal monitoring. Non-dominant frontal CMD, intracranial pressure (ICP), partial brain tissue oxygenation pressure (PbtO2), and cerebral perfusion pressure (CPP) were recorded every hour. The dominant jugular vein was accessed by retrograde insertion of a microdialysis catheter with the tip placed in the jugular bulb under ultrasound guidance. Glucose, lactate, pyruvate, lactate/pyruvate ratio, glycerol, and glutamate were studied for correlation to intracranial measurements. Modified Rankin scale was assessed at 6 months. RESULTS Twelve adult aSAH patients were monitored during a mean 4.2 ± 2.6 days yielding 22,041 data points for analysis. No complications related to JBMD were observed. Moderate or strong significant monotonic CMD-to-JBMD correlations were observed most often for glucose (7 patients), followed by lactate (5 patients), and pyruvate, glycerol, and glutamate (3 patients). Moderate correlation for lactate/pyruvate ratio was only seen in one patient. Analysis of critical periods defined by ICP > 20, CPP < 65, or PbtO2 < 15 revealed a tendency toward stronger CMD-to-JBMD associations in patients with many or long critical periods. Possible time lags between CMD and JBMD measurements were only identified in 6 out of 60 patient variables. With the exception of pyruvate, a dichotomized outcome was associated with similar metabolite patterns in JBMD and CMD. A nonsignificant tendency toward greater differences between outcome groups was seen in JBMD. CONCLUSIONS Continuous microdialysis monitoring of the cerebral drainage in the jugular bulb is feasible and safe. JBMD-to-CMD correlation is influenced by the type of metabolite measured, with glucose and lactate displaying the strongest associations. JBMD lactate correlated more often than CMD lactate to CPP, implying utility for detection of global cerebral metabolic perturbations. Studies comparing JBMD to other global measures of cerebral metabolism, e.g., PET CT or Xenon CT, are warranted.
Collapse
Affiliation(s)
- Axel Forsse
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark. .,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Troels Halfeld Nielsen
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon Mølstrøm
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Jacob Hjelmborg
- Department of Biostatistics and Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Kasper Stokbro Nielsen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, Odense, Denmark
| | - Kevin Hebøll Nygaard
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sibel Yilmaz
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Engquist H, Lewén A, Hillered L, Ronne-Engström E, Nilsson P, Enblad P, Rostami E. CBF changes and cerebral energy metabolism during hypervolemia, hemodilution, and hypertension therapy in patients with poor-grade subarachnoid hemorrhage. J Neurosurg 2021; 134:555-564. [PMID: 31923897 DOI: 10.3171/2019.11.jns192759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Despite the multifactorial pathogenesis of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH), augmentation of cerebral blood flow (CBF) is still considered essential in the clinical management of DCI. The aim of this prospective observational study was to investigate cerebral metabolic changes in relation to CBF during therapeutic hypervolemia, hemodilution, and hypertension (HHH) therapy in poor-grade SAH patients with DCI. METHODS CBF was assessed by bedside xenon-enhanced CT at days 0-3, 4-7, and 8-12, and the cerebral metabolic state by cerebral microdialysis (CMD), analyzing glucose, lactate, pyruvate, and glutamate hourly. At clinical suspicion of DCI, HHH therapy was instituted for 5 days. CBF measurements and CMD data at baseline and during HHH therapy were required for study inclusion. Non-DCI patients with measurements in corresponding time windows were included as a reference group. RESULTS In DCI patients receiving HHH therapy (n = 12), global cortical CBF increased from 30.4 ml/100 g/min (IQR 25.1-33.8 ml/100 g/min) to 38.4 ml/100 g/min (IQR 34.2-46.1 ml/100 g/min; p = 0.006). The energy metabolic CMD parameters stayed statistically unchanged with a lactate/pyruvate (L/P) ratio of 26.9 (IQR 22.9-48.5) at baseline and 31.6 (IQR 22.4-35.7) during HHH. Categorized by energy metabolic patterns during HHH, no patient had severe ischemia, 8 showed derangement corresponding to mitochondrial dysfunction, and 4 were normal. The reference group of non-DCI patients (n = 11) had higher CBF and lower L/P ratios at baseline with no change over time, and the metabolic pattern was normal in all these patients. CONCLUSIONS Global and regional CBF improved and the cerebral energy metabolic CMD parameters stayed statistically unchanged during HHH therapy in DCI patients. None of the patients developed metabolic signs of severe ischemia, but a disturbed energy metabolic pattern was a common occurrence, possibly explained by mitochondrial dysfunction despite improved microcirculation.
Collapse
Affiliation(s)
- Henrik Engquist
- Departments of1Neuroscience/Neurosurgery and
- 2Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Per Enblad
- Departments of1Neuroscience/Neurosurgery and
| | | |
Collapse
|
7
|
Zahra K, Gopal N, Freeman WD, Turnbull MT. Using Cerebral Metabolites to Guide Precision Medicine for Subarachnoid Hemorrhage: Lactate and Pyruvate. Metabolites 2019; 9:metabo9110245. [PMID: 31652842 PMCID: PMC6918279 DOI: 10.3390/metabo9110245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the deadliest types of strokes with high rates of morbidity and permanent injury. Fluctuations in the levels of cerebral metabolites following SAH can be indicators of brain injury severity. Specifically, the changes in the levels of key metabolites involved in cellular metabolism, lactate and pyruvate, can be used as a biomarker for patient prognosis and tailor treatment to an individual’s needs. Here, clinical research is reviewed on the usefulness of cerebral lactate and pyruvate measurements as a predictive tool for SAH outcomes and their potential to guide a precision medicine approach to treatment.
Collapse
Affiliation(s)
- Kaneez Zahra
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| | - Neethu Gopal
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| | - William D Freeman
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
- Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| | - Marion T Turnbull
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| |
Collapse
|
8
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|