1
|
Orlando IF, Hezemans FH, Ye R, Murley AG, Holland N, Regenthal R, Barker RA, Williams-Gray CH, Passamonti L, Robbins TW, Rowe JB, O’Callaghan C. Noradrenergic modulation of saccades in Parkinson's disease. Brain Commun 2024; 6:fcae297. [PMID: 39464213 PMCID: PMC11503952 DOI: 10.1093/braincomms/fcae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024] Open
Abstract
Noradrenaline is a powerful modulator of cognitive processes, including action decisions underlying saccadic control. Changes in saccadic eye movements are common across neurodegenerative diseases of ageing, including Parkinson's disease. With growing interest in noradrenergic treatment potential for non-motor symptoms in Parkinson's disease, the temporal precision of oculomotor function is advantageous to assess the effects of this modulation. Here, we studied the effect of 40 mg atomoxetine, a noradrenaline reuptake inhibitor, in 19 people with idiopathic Parkinson's disease using a single dose, randomized double-blind, crossover, placebo-controlled design. Twenty-five healthy adult participants completed the assessments to provide normative data. Participants performed prosaccade and antisaccade tasks. The latency, velocity and accuracy of saccades, and resting pupil diameter, were measured. Increased pupil diameter on the drug confirmed its expected effect on the locus coeruleus ascending arousal system. Atomoxetine altered key aspects of saccade performance: prosaccade latencies were faster and the saccadic main sequence was normalized. These changes were accompanied by increased antisaccade error rates on the drug. Together, these findings suggest a shift in the speed-accuracy trade-off for visuomotor decisions in response to noradrenergic treatment. Our results provide new evidence to substantiate a role for noradrenergic modulation of saccades, and based on known circuitry, we advance the hypothesis that this reflects modulation at the level of the locus coeruleus-superior colliculus pathway. Given the potential for noradrenergic treatment of non-motor symptoms of Parkinson's disease and related conditions, the oculomotor system can support the assessment of cognitive effects without limb-motor confounds on task performance.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of CambridgeCB2 3EA, CambridgeUK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
2
|
Garces P, Antoniades CA, Sobanska A, Kovacs N, Ying SH, Gupta AS, Perlman S, Szmulewicz DJ, Pane C, Németh AH, Jardim LB, Coarelli G, Dankova M, Traschütz A, Tarnutzer AA. Quantitative Oculomotor Assessment in Hereditary Ataxia: Systematic Review and Consensus by the Ataxia Global Initiative Working Group on Digital-motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:896-911. [PMID: 37117990 PMCID: PMC11102387 DOI: 10.1007/s12311-023-01559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Oculomotor deficits are common in hereditary ataxia, but disproportionally neglected in clinical ataxia scales and as outcome measures for interventional trials. Quantitative assessment of oculomotor function has become increasingly available and thus applicable in multicenter trials and offers the opportunity to capture severity and progression of oculomotor impairment in a sensitive and reliable manner. In this consensus paper of the Ataxia Global Initiative Working Group On Digital Oculomotor Biomarkers, based on a systematic literature review, we propose harmonized methodology and measurement parameters for the quantitative assessment of oculomotor function in natural-history studies and clinical trials in hereditary ataxia. MEDLINE was searched for articles reporting on oculomotor/vestibular properties in ataxia patients and a study-tailored quality-assessment was performed. One-hundred-and-seventeen articles reporting on subjects with genetically confirmed (n=1134) or suspected hereditary ataxia (n=198), and degenerative ataxias with sporadic presentation (n=480) were included and subject to data extraction. Based on robust discrimination from controls, correlation with disease-severity, sensitivity to change, and feasibility in international multicenter settings as prerequisite for clinical trials, we prioritize a core-set of five eye-movement types: (i) pursuit eye movements, (ii) saccadic eye movements, (iii) fixation, (iv) eccentric gaze holding, and (v) rotational vestibulo-ocular reflex. We provide detailed guidelines for their acquisition, and recommendations on the quantitative parameters to extract. Limitations include low study quality, heterogeneity in patient populations, and lack of longitudinal studies. Standardization of quantitative oculomotor assessments will facilitate their implementation, interpretation, and validation in clinical trials, and ultimately advance our understanding of the evolution of oculomotor network dysfunction in hereditary ataxias.
Collapse
Affiliation(s)
- Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Clinical Neurology, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Sobanska
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Norbert Kovacs
- Department of Neurology, University of Pécs, Medical School, Pécs, Hungary
| | - Sarah H Ying
- Department of Otology and Laryngology and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, California, USA
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Royal Victoria Eye and Ear Hospital, East Melbourne, Melbourne, VIC, 3002, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Genetics, Neurogene National Reference Centre for Rare Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Michaela Dankova
- Department of Neurology, Centre of Hereditary Ataxias, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases", Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Alexander A Tarnutzer
- Neurology, Cantonal Hospital of Baden, 5404, Baden, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lopergolo D, Rosini F, Pretegiani E, Bargagli A, Serchi V, Rufa A. Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features. Front Integr Neurosci 2024; 17:1275794. [PMID: 38390227 PMCID: PMC10883068 DOI: 10.3389/fnint.2023.1275794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Rosini
- UOC Stroke Unit, Department of Emergenza-Urgenza, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elena Pretegiani
- Unit of Neurology, Centre Hospitalier Universitaire Vaudoise Lausanne, Unit of Neurology and Cognitive Neurorehabilitation, Universitary Hospital of Fribourg, Fribourg, Switzerland
| | - Alessia Bargagli
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valeria Serchi
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Bajek A, Przewodowska D, Koziorowski D, Jędrzejowska M, Szlufik S. Cervical dystonia and no oculomotor apraxia as new manifestation of ataxia-telangiectasia-like disorder 1 - case report and review of the literature. Front Neurol 2023; 14:1243535. [PMID: 37808486 PMCID: PMC10556495 DOI: 10.3389/fneur.2023.1243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Ataxia-telangiectasia-like disorder 1 (ATLD1) is a rare neurodegenerative disorder associated with early onset ataxia and oculomotor apraxia. The genetic determination of ATLD1 is a mutation in the MRE11 gene (meiotic recombination 11 gene), which causes DNA-double strand break repair deficits. Clinical features of patients with ATLD1 resemble those of ataxia telangiectasia (AT), with slower progression and milder presentation. Main symptoms include progressive cerebellar ataxia, oculomotor apraxia, cellular hypersensitivity to ionizing radiations. Facial dyskinesia, dystonia, dysarthria have also been reported. Here we present a 45-year old woman with cervical and facial dystonia, dysarthria and ataxia, who turned out to be the first case of ATLD without oculomotor apraxia, and with dystonia as a main manifestation of the disease. She had presented those non-specific symptoms for years, before whole exome sequencing confirmed the diagnosis.
Collapse
Affiliation(s)
- Agnieszka Bajek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Przewodowska
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Maria Jędrzejowska
- Genomed Health Care Center, Warsaw, Poland
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
6
|
Azami H, Chang Z, Arnold SE, Sapiro G, Gupta AS. Detection of Oculomotor Dysmetria From Mobile Phone Video of the Horizontal Saccades Task Using Signal Processing and Machine Learning Approaches. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:34022-34031. [PMID: 36339795 PMCID: PMC9632643 DOI: 10.1109/access.2022.3156964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eye movement assessments have the potential to help in diagnosis and tracking of neurological disorders. Cerebellar ataxias cause profound and characteristic abnormalities in smooth pursuit, saccades, and fixation. Oculomotor dysmetria (i.e., hypermetric and hypometric saccades) is a common finding in individuals with cerebellar ataxia. In this study, we evaluated a scalable approach for detecting and quantifying oculomotor dysmetria. Eye movement data were extracted from iPhone video recordings of the horizontal saccade task (a standard clinical task in ataxia) and combined with signal processing and machine learning approaches to quantify saccade abnormalities. Entropy-based measures of eye movements during saccades were significantly different in 72 individuals with ataxia with dysmetria compared with 80 ataxia and Parkinson's participants without dysmetria. A template matching-based analysis demonstrated that saccadic eye movements in patients without dysmetria were more similar to the ideal template of saccades. A support vector machine was then used to train and test the ability of multiple signal processing features in combination to distinguish individuals with and without oculomotor dysmetria. The model achieved 78% accuracy (sensitivity= 80% and specificity= 76%). These results show that the combination of signal processing and machine learning approaches applied to iPhone video of saccades, allow for extraction of information pertaining to oculomotor dysmetria in ataxia. Overall, this inexpensive and scalable approach for capturing important oculomotor information may be a useful component of a screening tool for ataxia and could allow frequent at-home assessments of oculomotor function in natural history studies and clinical trials.
Collapse
Affiliation(s)
- Hamed Azami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Zhuoqing Chang
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27707, USA
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27707, USA
- Department of Computer Science, Duke University, Durham, NC 27707, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27707, USA
- Department of Mathematics, Duke University, Durham, NC 27707, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Abstract
Saccades are rapid ballistic eye movements that humans make to direct the fovea to an object of interest. Their kinematics is well defined, showing regular relationships between amplitude, duration, and velocity: the saccadic 'main sequence'. Deviations of eye movements from the main sequence can be used as markers of specific neurological disorders. Despite its significance, there is no general methodological consensus for reliable and repeatable measurements of the main sequence. In this work, we propose a novel approach for standard indicators of oculomotor performance. The obtained measurements are characterized by high repeatability, allowing for fine assessments of inter- and intra-subject variability, and inter-ocular differences. The designed experimental procedure is natural and non-fatiguing, thus it is well suited for fragile or non-collaborative subjects like neurological patients and infants. The method has been released as a software toolbox for public use. This framework lays the foundation for a normative dataset of healthy oculomotor performance for the assessment of oculomotor dysfunctions.
Collapse
Affiliation(s)
- Agostino Gibaldi
- School of Optometry and Vision Science, University of California at Berkeley, 380, Minor Lane, CA, USA.
| | - Silvio P Sabatini
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via All'Opera Pia, 13, Genoa, 16145, Italy
| |
Collapse
|
8
|
Raslan IR, de Assis Pereira Matos PCA, Boaratti Ciarlariello V, Daghastanli KH, Rosa ABR, Arita JH, Aranda CS, Barsottini OGP, Pedroso JL. Beyond Typical Ataxia Telangiectasia: How to Identify the Ataxia Telangiectasia-Like Disorders. Mov Disord Clin Pract 2021; 8:118-125. [PMID: 33426167 PMCID: PMC7780949 DOI: 10.1002/mdc3.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia is one of the most common causes of autosomal recessive cerebellar ataxias. However, absence of telangiectasia, normal levels of alpha-fetoprotein and negative genetic test may direct to alternative diagnosis with similar phenotypes such as ataxia telangiectasia-like disorders (ATLD). CASES We report two instructive cases of ATLD: the first case with ataxia telangiectasia-like disorder type 1 related to MRE11A gene, and the second case with ataxia telangiectasia-like disorder type 2 related to PCNA gene. LITERATURE REVIEW ATLD is an unusual group of autosomal recessive diseases that share some clinical features and pathophysiological mechanisms with ataxia telangiectasia (AT). ATLD may be associated with mutations in the MRE11A (ATLD type 1) and PCNA (ATLD type 2) genes. ATLD belongs to the group of chromosomal instability syndromes. The reason for the term ATLD is related to the similar pathophysiological mechanisms observed in AT, which is characterized by chromosomal instability and radiosensitivity. CONCLUSIONS In this review, the main clinical features, biomarkers, brain imaging and genetics of ATLD are discussed. Mutations in the MRE11A and PCNA genes should be included in the differential diagnosis for early onset cerebellar ataxia with absence of telangiectasia and normal levels of alpha-fetoprotein.
Collapse
Affiliation(s)
- Ivana Rocha Raslan
- Department of Neurology, Ataxia UnitUniversidade Federal de São PauloSão PauloBrazil
| | | | | | | | | | | | | | | | - José Luiz Pedroso
- Department of Neurology, Ataxia UnitUniversidade Federal de São PauloSão PauloBrazil
| |
Collapse
|
9
|
Eye movement especially vertical oculomotor impairment as an aid to assess Parkinson's disease. Neurol Sci 2020; 42:2337-2345. [PMID: 33043395 DOI: 10.1007/s10072-020-04796-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
AIMS To detect abnormal eye movements in Parkinson's disease and explore its correlation with clinical characteristics and their value for diagnosis. METHODS We recruited forty-nine Parkinson's disease patients, including 35 early Parkinson's disease patients (Hoehn-Yahr: 1 to 2 stage) and 14 advanced Parkinson's disease patients (Hoehn-Yahr: 3 to 5 stage) and 23 healthy controls. Clinical manifestations in Parkinson's disease patients were recorded. Oculomotor performances including fixation, gaze, saccade in horizontal and vertical direction, and smooth pursuit in horizontal and vertical direction were measured by video-oculography. RESULTS We found that five oculomotor parameters, namely square wave jerk frequency, latency of downward saccade, latency of upward saccade, accuracy of upward saccade, and gain of horizontal smooth pursuit were significantly different in Parkinson's disease patients and controls. When combining all these five parameters, we got the diagnostic sensitivity of 78.3% and specificity of 95.2%. More deficits in upward saccade than in other directions were associated with disease duration and progression of Parkinson's disease. CONCLUSION Our primary study suggests that oculomotor examination might serve as an aid in the clinical assessment of Parkinson's disease patients and differentiating between early Parkinson's disease and normal controls.
Collapse
|
10
|
Tang SY, Shaikh AG. Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia. CEREBELLUM (LONDON, ENGLAND) 2019; 18:556-564. [PMID: 30523550 PMCID: PMC6751135 DOI: 10.1007/s12311-018-0990-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ataxia-telangiectasia is the second most common autosomal recessive hereditary ataxia, with an estimated incidence of 1 in 100,000 births. Besides ataxia and ocular telangiectasias, eye movement abnormalities have long been associated with this disorder and is frequently present in almost all patients. A handful of studies have described the phenomenology of ocular motor deficits in ataxia-telangiectasia. Contemporary literature linked their physiology to cerebellar dysfunction and secondary abnormalities at the level of brainstem. These studies, while providing a proof of concept of ocular motor physiology in disease, i.e., ataxia-telangiectasia, also advanced our understanding of how the cerebellum works. Here, we will summarize the clinical abnormalities seen with ataxia-telangiectasia in each subtype of eye movements and subsequently describe the underlying pathophysiology. Finally, we will review how these deficits are linked to abnormal cerebellar function and how it allows better understanding of the cerebellar physiology.
Collapse
Affiliation(s)
- Sherry Y Tang
- Department of Neurology, Neurology Service, Cleveland VA Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA
| | - Aasef G Shaikh
- Department of Neurology, Neurology Service, Cleveland VA Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
| |
Collapse
|
11
|
Cohen M, Zesiger P, Merlini L, de Haller R, Fluss J. Modalities of reading acquisition in three siblings with infantile-onset saccade initiation delay (Cogan congenital ocular motor apraxia): A longitudinal study. Eur J Paediatr Neurol 2019; 23:517-524. [PMID: 30782493 DOI: 10.1016/j.ejpn.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
Abstract
This study aims to ascertain the impact of congenital ocular motor apraxia (COMA), alternatively called infantile-onset saccade initiation delay (ISID), on reading acquisition. More specifically, the consequence of defective initiation of horizontal saccades during reading acquisition was investigated. Three siblings (A: male, 11y3m at the first time-point of testing (i.e. T1 hereafter); B: female, 7y3m at T1 and C: male, 5y9m at T1) suffering from ISID were assessed longitudinally over 3 years in various reading tests and their eye movements simultaneously registered. At each time-point, they were compared to control participants matched on reading level. Eye movements during reading tasks were markedly abnormal in children with ISID at the beginning of reading acquisition and their reading scores were poor. With time, the number of fixations, small amplitude saccades and their reading abilities became comparable to those of control children. Despite the abnormal eye movements and difficulties in specifically directing the eyes to the appropriate position, children with ISID do not seem to encounter major difficulties during reading acquisition, although mild delays might be observed during the early stages.
Collapse
Affiliation(s)
- Marjolaine Cohen
- Faculty of Psychology and Educational Science, University of Geneva, 28 Bd Pont d'Arve, CH-1211, Genève 4, Switzerland.
| | - Pascal Zesiger
- Faculty of Psychology and Educational Science, University of Geneva, 28 Bd Pont d'Arve, CH-1211, Genève 4, Switzerland
| | - Laura Merlini
- Pediatric Radiology, Children's Hospital of Geneva, Switzerland
| | - Raoul de Haller
- Pediatric Ophthalmology, La Tour Hospital, Geneva, Switzerland
| | - Joel Fluss
- Pediatric Neurology Unit, Pediatric Subspecialties Service, Children's Hospital of Geneva, Switzerland
| |
Collapse
|
12
|
Zastrow DB, Kohler JN, Bonner D, Reuter CM, Fernandez L, Grove ME, Fisk DG, Yang Y, Eng CM, Ward PA, Bick D, Worthey EA, Fisher PG, Ashley EA, Bernstein JA, Wheeler MT. A toolkit for genetics providers in follow-up of patients with non-diagnostic exome sequencing. J Genet Couns 2019; 28:213-228. [PMID: 30964584 PMCID: PMC7385984 DOI: 10.1002/jgc4.1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.
Collapse
Affiliation(s)
- Diane B Zastrow
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Jennefer N Kohler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Devon Bonner
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Chloe M Reuter
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Liliana Fernandez
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Megan E Grove
- Clinical Genomics Program, Stanford Health Care, Stanford, California
| | - Dianna G Fisk
- Clinical Genomics Program, Stanford Health Care, Stanford, California
| | | | | | | | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | | | - Paul G Fisher
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Department of Neurology, Stanford University School of Medicine, Stanford, California
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Euan A Ashley
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Clinical Genomics Program, Stanford Health Care, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jonathan A Bernstein
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|