1
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem 2024; 168:1475-1489. [PMID: 37358003 DOI: 10.1111/jnc.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Helena Iturvides Cimarosti
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
3
|
Trinh QD, Mai HN, Pham DT. Application of mesenchymal stem cells for neurodegenerative diseases therapy discovery. Regen Ther 2024; 26:981-989. [PMID: 39524179 PMCID: PMC11550585 DOI: 10.1016/j.reth.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases are central or peripheral nervous system disorders associated with progressive brain cell degeneration. Common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis have been widely studied. However, current therapeutics only reduce the symptoms and do not ameliorate the pathogenesis of these diseases. Recent studies suggested the roles of neuroinflammation, apoptosis, and oxidative stress in neurodegenerative diseases. Mesenchymal stem cells (MSCs) exert anti-apoptotic, anti-inflammatory, and antioxidative effects. Therefore, investigating the effects of MSCs and their applications may lead to the discovery of more effective therapies for neurodegenerative diseases. In this study, we review different approaches used to identify therapies for neurodegenerative diseases using MSCs.
Collapse
Affiliation(s)
- Quynh Dieu Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Huynh Nhu Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Duc Toan Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Zhang H, Chen C, Zhang EE, Huang X. TDP-43 deficiency in suprachiasmatic nucleus perturbs rhythmicity of neuroactivity in prefrontal cortex. iScience 2024; 27:109522. [PMID: 38585660 PMCID: PMC10995886 DOI: 10.1016/j.isci.2024.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Individuals within the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD) often experience disruptive mental behaviors and sleep-wake disturbances. The hallmark of ALS/FTD is the pathological involvement of TAR DNA-binding protein 43 (TDP-43). Understanding the role of TDP-43 in the circadian clock holds promise for addressing these behavioral abnormalities. In this study, we unveil TDP-43 as a pivotal regulator of the circadian clock. TDP-43 knockdown induces intracellular arrhythmicity, disrupts transcriptional activation regulation, and diminishes clock genes expression. Moreover, our experiments in adult mouse reveal that TDP-43 knockdown, specifically within the suprachiasmatic nucleus (SCN), induces locomotor arrhythmia, arrhythmic c-Fos expression, and depression-like behavior. This observation offers valuable insights into the substantial impact of TDP-43 on the behavioral aberrations associated with ALS/FTD. In summary, our study illuminates the significance of TDP-43 in circadian regulation, shedding light on the circadian regulatory mechanisms that may elucidate the pathological underpinnings of ALS/FTD.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Xiaotian Huang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Gnoni V, Zoccolella S, Giugno A, Urso D, Tamburrino L, Filardi M, Logroscino G. Hypothalamus and amyotrophic lateral sclerosis: potential implications in sleep disorders. Front Aging Neurosci 2023; 15:1193483. [PMID: 37465321 PMCID: PMC10350538 DOI: 10.3389/fnagi.2023.1193483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects both motor and non-motor functions, including sleep regulation. Emerging evidence suggests that the hypothalamus, a brain region that plays a critical role in sleep-wake regulation, may be involved in the pathogenesis of ALS-related sleep disturbances. In this review, we have summarized results of studies on sleep disorders in ALS published between 2000 and 2023. Thereafter, we examined possible mechanisms by which hypothalamic dysfunctions may contribute to ALS-related sleep disturbances. Achieving a deeper understanding of the relationship between hypothalamic dysfunction and sleep disturbances in ALS can help improve the overall management of ALS and reduce the burden on patients and their families.
Collapse
Affiliation(s)
- Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Neurology Unit, San Paolo Hospital, Azienda Sanitaria Locale (ASL) Bari, Bari, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ludovica Tamburrino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Liu W, Ma R, Sun C, Xu Y, Liu Y, Hu J, Ma Y, Wang D, Wen D, Yu Y. Implications from proteomic studies investigating circadian rhythm disorder-regulated neurodegenerative disease pathology. Sleep Med Rev 2023; 70:101789. [PMID: 37253318 DOI: 10.1016/j.smrv.2023.101789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Neurodegenerative diseases (NDs) affect 15% of the world's population and are becoming an increasingly common cause of morbidity and mortality worldwide. Circadian rhythm disorders (CRDs) have been reported to be involved in the pathogenic regulation of various neurologic diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Proteomic technology is helpful to explore treatment targets for CRDs in patients with NDs. Here, we review the key differentially expressed (DE) proteins identified in previous proteomic studies investigating NDs, CRDs and associated models and the related pathways identified by enrichment analysis. Furthermore, we summarize the advantages and disadvantages of the above studies and propose new proteomic technologies for the precise study of circadian disorder-mediated regulation of ND pathology. This review provides a theoretical and technical reference for the precise study of circadian disorder-mediated regulation of ND pathology.
Collapse
Affiliation(s)
- Weiwei Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Ruze Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Chen Sun
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yang Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiajin Hu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yanan Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Deliang Wen
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
8
|
Association of circadian rhythm with mild cognitive impairment among male pneumoconiosis workers in Hong Kong: a cross-sectional study. Sci Rep 2023; 13:1650. [PMID: 36717700 PMCID: PMC9885413 DOI: 10.1038/s41598-023-28832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Weakened circadian activity rhythms (CARs) were associated with mild cognitive impairment (MCI) in the general population. However, it remains unclear among pneumoconiosis patients. We aimed to address this knowledge gap. This cross-sectional study comprised 186 male pneumoconiosis patients (71.3 ± 7.8 years) and 208 healthy community men. Actigraphy was used to determine CARs parameters (percent rhythm, amplitude, MESOR, and acrophase). Values below the corresponding medians of the CARs parameters represented weakened CARs. The Cantonese version of Mini-Mental State Examination (CMMSE) was used to assess cognitive function, MCI, and the composite outcome of MCI plus cognitive impairment. Compared with the community referents, pneumoconiosis patients had worse cognition and dampened CARs. Compared with the community referents or pneumoconiosis patients with robust circadian rhythm, pneumoconiosis patients with weakened circadian rhythm were consistently associated with increased risk of MCI and the composite outcome. However, significant association was only observed between MESOR and the composite outcome (adjusted OR = 1.99, 95%: 1.04-3.81). A delayed phase of CARs was insignificantly associated with MCI and the composite outcome. Our findings showed that weakened CARs were associated with worse cognitive function among male pneumoconiosis workers. Intervention in improving CARs may mitigate cognitive deterioration in male pneumoconiosis workers.
Collapse
|
9
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
10
|
Anderson G. Amyotrophic Lateral Sclerosis Pathoetiology and Pathophysiology: Roles of Astrocytes, Gut Microbiome, and Muscle Interactions via the Mitochondrial Melatonergic Pathway, with Disruption by Glyphosate-Based Herbicides. Int J Mol Sci 2022; 24:ijms24010587. [PMID: 36614029 PMCID: PMC9820185 DOI: 10.3390/ijms24010587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The pathoetiology and pathophysiology of motor neuron loss in amyotrophic lateral sclerosis (ALS) are still to be determined, with only a small percentage of ALS patients having a known genetic risk factor. The article looks to integrate wider bodies of data on the biological underpinnings of ALS, highlighting the integrative role of alterations in the mitochondrial melatonergic pathways and systemic factors regulating this pathway across a number of crucial hubs in ALS pathophysiology, namely glia, gut, and the muscle/neuromuscular junction. It is proposed that suppression of the mitochondrial melatonergic pathway underpins changes in muscle brain-derived neurotrophic factor, and its melatonergic pathway mimic, N-acetylserotonin, leading to a lack of metabolic trophic support at the neuromuscular junction. The attenuation of the melatonergic pathway in astrocytes prevents activation of toll-like receptor agonists-induced pro-inflammatory transcription factors, NF-kB, and yin yang 1, from having a built-in limitation on inflammatory induction that arises from their synchronized induction of melatonin release. Such maintained astrocyte activation, coupled with heightened microglia reactivity, is an important driver of motor neuron susceptibility in ALS. Two important systemic factors, gut dysbiosis/permeability and pineal melatonin mediate many of their beneficial effects via their capacity to upregulate the mitochondrial melatonergic pathway in central and systemic cells. The mitochondrial melatonergic pathway may be seen as a core aspect of cellular function, with its suppression increasing reactive oxygen species (ROS), leading to ROS-induced microRNAs, thereby altering the patterning of genes induced. It is proposed that the increased occupational risk of ALS in farmers, gardeners, and sportsmen and women is intimately linked to exposure, whilst being physically active, to the widely used glyphosate-based herbicides. This has numerous research and treatment implications.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
11
|
Bidirectional Mendelian randomization to explore the causal relationships between Sleep traits, Parkinson's disease and Amyotrophic lateral sclerosis. Sleep Med 2022; 96:42-49. [PMID: 35594779 DOI: 10.1016/j.sleep.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
|
12
|
Cullell N, Cárcel-Márquez J, Gallego-Fábrega C, Muiño E, Llucià-Carol L, Lledós M, Amaut KEU, Krupinski J, Fernández-Cadenas I. Sleep/wake cycle alterations as a cause of neurodegenerative diseases: A Mendelian randomization study. Neurobiol Aging 2021; 106:320.e1-320.e12. [PMID: 34130902 DOI: 10.1016/j.neurobiolaging.2021.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Sleep and/or wake cycle alterations are common in neurodegenerative diseases (ND). Our aim was to determine whether there is a causal relationship between sleep and/or wake cycle patterns and ND (Parkinson's disease (PD) age at onset (AAO), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS)) using two-sample Mendelian Randomization (MR). We selected 12 sleep traits with available Genome-Wide Association Study (GWAS) to evaluate their causal relationship with the ND risk through Inverse-Variance Weighted regression as main analysis. We used as outcome the latest ND GWAS with available summary-statistics: PD-AAO (N = 17,996), AD (N = 21,235) and ALS (N = 40,136). MR results pointed to a causal effect of subjective and objective-measured morning chronotype on later PD-AAO (95%CI:0.33-1.81, p = 8.47×10-09 and 95%CI:-7.28 to -4.44, p = 5.87×10-16, respectively). Sleep efficiency was causally associated with a decreased AD risk (95%CI:-20.408 to -0.66, p = 0.04) and daytime sleepiness with an increased ALS risk (95%CI:0.15 to 1.61, p = 0.01). Our study suggests that sleep and/or wake patterns have causal relationship with ND. Given that sleep and/or wake patterns are modifiable risk factors, sleep interventions should be investigated as a potential treatment in PD-AAO, AD and ALS.
Collapse
Affiliation(s)
- Natalia Cullell
- Department of Neurology, Hospital Universitari MútuaTerrassa / Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain // Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain // Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Cristina Gallego-Fábrega
- Department of Neurology, Hospital Universitari MútuaTerrassa / Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain // Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spainn
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | | | - Jerzy Krupinski
- Department of Neurology, Hospital Universitari MútuaTerrassa / Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain // Centre for bioscience, School of HealthCare Science, Manchester Metropolitan University, Manchester, UK
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain // Department of Neurology, Hospital Universitari MútuaTerrassa / Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain.
| |
Collapse
|
13
|
Sun X, Zhao X, Liu Q, Liu S, Zhang K, Wang ZL, Yang X, Shang L, Huang Y, Cui L, Zhang X. Study on sleep-wake disorders in patients with genetic and non-genetic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-324544. [PMID: 33087425 DOI: 10.1136/jnnp-2020-324544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the frequency and clinical features of sleep disturbances in amyotrophic lateral sclerosis (ALS) patients and compare sleep disorders between ALS with and without mutations. METHODS In this case-control study, 204 ALS patients and 206 controls were included. We evaluated sleep quality using Pittsburgh Sleep Quality Index (PSQI). Excessive daytime sleepiness (EDS) was diagnosed according to Epworth Sleepiness Scale (ESS). Other characteristics, including rapid eye movement sleep behaviour disorder, restless legs syndrome (RLS), cognitive and psychological impairments, were also evaluated. All ALS patients underwent whole exome sequencing analysis to screen for ALS mutations and were divided into genetic ALS and non-genetic ALS subgroups based on the genetic testing results. RESULTS A total of 114 men and 90 women ALS patients, with a mean onset age of 53.5±9.9 years, were included in this study. There were 21 mutations detected, contributing to 46.6% of familial amyotrophic lateral sclerosis (FALS) and 7.4% of sporadic amyotrophic lateral sclerosis (SALS). The PQSI and ESS scores were higher in ALS patients than in controls (PSQI 6.0 (3.0,10.0) vs 3.5 (2.0,5.0) (p<0.01); ESS 6.0 (3.0,10.0) vs 4.0 (3.0,8.0) (p<0.01), respectively). RLS was more frequent in ALS patients than in controls (p<0.01). Genetic ALS patients were more likely to show EDS than non-genetic ALS patients (adjusted OR 5.2, p<0.01). Genetic ALS scored lower on Revised ALS Functional Rating Scale, and higher on PSQI and ESS than non-genetic ALS (p<0.01). CONCLUSIONS In the current study, ALS patients with mutations were more likely to have sleep-wake disturbances than were those without mutations. The former group may benefit more from sleep management.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Ximeng Zhao
- McKusick-Zhang Center for Genetic Medicine,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangwu Liu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Kang Zhang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Zhi-Li Wang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Liang Shang
- McKusick-Zhang Center for Genetic Medicine,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Huang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Golini E, Rigamonti M, Iannello F, De Rosa C, Scavizzi F, Raspa M, Mandillo S. A Non-invasive Digital Biomarker for the Detection of Rest Disturbances in the SOD1G93A Mouse Model of ALS. Front Neurosci 2020; 14:896. [PMID: 32982678 PMCID: PMC7490341 DOI: 10.3389/fnins.2020.00896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease that affects both central and peripheral nervous system, leading to the degeneration of motor neurons, which eventually results in muscle atrophy, paralysis, and death. Sleep disturbances are common in patients with ALS, leading to even further deteriorated quality of life. Investigating methods to potentially assess sleep and rest disturbances in animal models of ALS is thus of crucial interest. We used an automated home cage monitoring system (DVC®) to capture irregular activity patterns that can potentially be associated with sleep and rest disturbances and thus to the progression of ALS in the SOD1G93A mouse model. DVC® enables non-intrusive 24/7 long term animal activity monitoring, which we assessed together with body weight decline and neuromuscular function deterioration measured by grid hanging and grip strength tests in male and female mice from 7 until 24 weeks of age. We show that as the ALS progresses over time in SOD1G93A mice, activity patterns start becoming irregular, especially during day time, with frequent activity bouts that are neither observed in control mice nor in SOD1G93A at a younger age. The increasing irregularities of activity pattern are quantitatively captured by designing a novel digital biomarker, referred to as Regularity Disruption Index (RDI). We show that RDI is a robust measure capable of detecting home cage activity patterns that could be related to rest/sleep-related disturbances during the disease progression. Moreover, the RDI rise during the early symptomatic stage parallels grid hanging and body weight decline. The non-intrusive long-term continuous monitoring of animal activity enabled by DVC® has been instrumental in discovering novel activity patterns potentially correlated, once validated, with sleep and rest disturbances in the SOD1G93A mouse model of the ALS disease.
Collapse
Affiliation(s)
- Elisabetta Golini
- Institute of Biochemistry and Cell Biology-National Research Council (IBBC-CNR), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| | | | | | - Carla De Rosa
- Institute of Biochemistry and Cell Biology-National Research Council (IBBC-CNR), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology-National Research Council (IBBC-CNR), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology-National Research Council (IBBC-CNR), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology-National Research Council (IBBC-CNR), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| |
Collapse
|
15
|
Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:393-412. [PMID: 32739012 DOI: 10.1016/bs.irn.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.
Collapse
|
16
|
Venkat N, Sinha M, Sinha R, Ghate J, Pande B. Neuro-Cognitive Profile of Morning and Evening Chronotypes at Different Times of Day. Ann Neurosci 2020; 27:257-265. [PMID: 34556966 PMCID: PMC8455015 DOI: 10.1177/0972753121990280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronotype is the circadian time preference for sleep-wake timings. However, its impact on cognitive performance is least explored. OBJECTIVE The present study investigated the effect of chronotype (morning "M" vs. evening "E") on cognitive measures as a function of time of the day. In addition, the correlation between electroencephalogram (EEG) waves and subjective/objective cognitive measures were investigated. METHOD Cognitive status of 28 adult male subjects (15 "M" and 13 "E") was assessed objectively through event-related potential (ERP) by administering visual odd ball paradigm test and subjectively through Montreal Cognitive Assessment questionnaire. In addition, 20 to 30 min of resting EEG was recorded. Recordings were done from 8 to 10 am and from 4 to 6 pm on a single day. Power spectral analysis of EEG for alpha and beta waves at PZ and FZ cortical sites was done after subjecting selected epochs to fast Fourier transformation. Also, latency and amplitude of P300 potential from event-related potential record were measured. Appropriate statistical tests were applied for analysis. RESULTS Higher alpha and beta power was observed in "E" at PZ in the evening. "M" showed increased P300 latency and amplitude during evening session for frequent and rare stimuli and vice versa in "E."' Significant negative correlation was seen between latency of rare stimuli and alpha and beta power at FZ site during evening in "E" chronotype only. CONCLUSION Result indicates better attention and alertness during evening hours in evening chronotypes and vice versa in morning chronotypes. The findings could be implemented to schedule the mental performance/cognitive load according to individual chronotype.
Collapse
Affiliation(s)
- Nanditha Venkat
- MBBS Intern, All India Institute of Medical Sciences, Tatibandh, Raipur, Chhattisgarh, India
| | - Meenakshi Sinha
- Department of Physiology, All India Institute of Medical Sciences, Tatibandh, Raipur (C.G), India
| | - Ramanjan Sinha
- Department of Physiology, All India Institute of Medical Sciences, Tatibandh, Raipur (C.G), India
| | - Jayshri Ghate
- Department of Physiology, All India Institute of Medical Sciences, Tatibandh, Raipur (C.G), India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Tatibandh, Raipur (C.G), India
| |
Collapse
|
17
|
Erber AC, Cetin H, Berry D, Schernhammer ES. The role of gut microbiota, butyrate and proton pump inhibitors in amyotrophic lateral sclerosis: a systematic review. Int J Neurosci 2019; 130:727-735. [PMID: 31870202 DOI: 10.1080/00207454.2019.1702549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim of the study: We conducted a systematic review on existing literature in humans and animals, linking the gut microbiome with amyotrophic lateral sclerosis (ALS). Additionally, we sought to explore the role of the bacterially produced metabolite butyrate as well as of proton pump inhibitors (PPIs) in these associations.Materials and methods: Following PRISMA guidelines for systematic literature reviews, four databases (Medline, Scopus, Embase and Web of Science) were searched and screened by two independent reviewers against defined inclusion criteria. Six studies in humans and six animal studies were identified, summarized and reviewed.Results: Overall, the evidence accrued to date is supportive of changes in the gut microbiome being associated with ALS risk, and potentially progression, though observational studies are small (describing a total of 145 patients with ALS across all published studies), and not entirely conclusive.Conclusions: With emerging studies beginning to apply metagenome sequencing, more clarity regarding the importance and promise of the gut microbiome in ALS can be expected. Future studies may also help establish the therapeutic potential of butyrate, and the role of PPIs in these associations.
Collapse
Affiliation(s)
- Astrid C Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Headington, Oxford, UK
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Function, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.,Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Eva S Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria.,Channing Division of Network Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dedeene L, Van Schoor E, Vandenberghe R, Van Damme P, Poesen K, Thal DR. Circadian sleep/wake-associated cells show dipeptide repeat protein aggregates in C9orf72-related ALS and FTLD cases. Acta Neuropathol Commun 2019; 7:189. [PMID: 31791419 PMCID: PMC6889626 DOI: 10.1186/s40478-019-0845-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
Abstract
Motor-, behavior- and/or cognition-related symptoms are key hallmarks in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with TDP-43 pathology (FTLD-TDP), respectively. It has been reported that these patients also experience sleep disturbances, which might implicate a disturbed circadian rhythm of the sleep/wake cycle. It remains unknown, however, whether cells involved in the circadian sleep/wake cycle are affected by ALS- and FTLD-related neuropathological changes including phosphorylated TDP-43 (pTDP-43) aggregates and dipeptide repeat protein (DPR) inclusions resulting from the C9orf72 hexanucleotide repeat expansion. Immunohistochemistry for DPR and pTDP-43 pathology was performed in post-mortem hypothalamus and pineal gland tissue of patients with ALS and/or FTLD-TDP with and without the C9orf72 repeat expansion and healthy controls. Circadian sleep/wake-associated cells, including pinealocytes and hypothalamic neurons related to the suprachiasmatic nucleus (SCN), were microscopically assessed. We observed numerous DPR inclusions (poly(GA), poly(GP), poly(GR) and poly(PR)) in the pinealocytes and few poly(GA) inclusions in the SCN-related neurons in C9orf72-related ALS and/or FTLD-TDP cases. These circadian sleep/wake-associated cells, however, were devoid of pTDP-43 pathology both in C9orf72- and nonC9orf72-related ALS and/or FTLD-TDP cases. Our neuropathological findings show that pinealocytes and, to a lesser extent, SCN-related neurons are affected by DPR pathology. This may reflect an involvement of these cells in sleep/wake disturbances observed in ALS and/or FTLD-TDP patients.
Collapse
|
19
|
Yanar K, Simsek B, Çakatay U. Integration of Melatonin Related Redox Homeostasis, Aging, and Circadian Rhythm. Rejuvenation Res 2019; 22:409-419. [DOI: 10.1089/rej.2018.2159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
20
|
Combinatory biotechnological intervention for gut microbiota. Appl Microbiol Biotechnol 2019; 103:3615-3625. [DOI: 10.1007/s00253-019-09727-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
|
21
|
Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019; 18:307-318. [PMID: 30784558 PMCID: PMC6426656 DOI: 10.1016/s1474-4422(18)30461-7] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Dysfunction in 24-h circadian rhythms is a common occurrence in ageing adults; however, circadian rhythm disruptions are more severe in people with age-related neurodegenerative diseases, including Alzheimer's disease and related dementias, and Parkinson's disease. Manifestations of circadian rhythm disruptions differ according to the type and severity of neurodegenerative disease and, for some patients, occur before the onset of typical clinical symptoms of neurodegeneration. Evidence from preliminary studies suggest that circadian rhythm disruptions, in addition to being a symptom of neurodegeneration, might also be a potential risk factor for developing Alzheimer's disease and related dementias, and Parkinson's disease, although large, longitudinal studies are needed to confirm this relationship. The mechanistic link between circadian rhythms and neurodegeneration is still not fully understood, although proposed underlying pathways include alterations of protein homoeostasis and immune and inflammatory function. While preliminary clinical studies are promising, more studies of circadian rhythm disruptions and its mechanisms are required. Furthermore, clinical trials are needed to determine whether circadian interventions could prevent or delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Leng
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA.
| | - Erik S Musiek
- Hope Center for Neurological Disorders and Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesco P Cappuccio
- Division of Health Sciences (Mental Health and Wellbeing), Warwick Medical School, University of Warwick, Coventry, UK
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
22
|
Abstract
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Collapse
Affiliation(s)
- Ryan W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Colleen A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Walter LM, Koch CE, Betts CA, Ahlskog N, Meijboom KE, van Westering TLE, Hazell G, Bhomra A, Claus P, Oster H, Wood MJA, Bowerman M. Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice. Hum Mol Genet 2018; 27:3582-3597. [PMID: 29982483 PMCID: PMC6168969 DOI: 10.1093/hmg/ddy249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | | | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Current affiliations: School of Medicine, Keele University, Staffordshire, UK
- Institute for Science and Technology in Medicine, Stoke-on-Trent, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
| |
Collapse
|