1
|
Zhang Y, Zhang Y, Yan Y, Kong X, Su S. Risk factors for falls in Parkinson's disease: a cross-sectional observational and Mendelian randomization study. Front Aging Neurosci 2024; 16:1420885. [PMID: 38915347 PMCID: PMC11194421 DOI: 10.3389/fnagi.2024.1420885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Background Patients with Parkinson's disease (PD) exhibit a heightened risk of falls and related fractures compared to the general population. This study aims to assess the clinical characteristics associated with falls in the patient with PD and to gain further insight into these factors through Mendelian randomization analysis. Methods From January 2013 to December 2023, we included 591 patients diagnosed with Parkinson's disease at Shenzhen Baoan People's Hospital. Using univariate and multivariate logistic regression analyses, we identified clinical variables associated with falls. We constructed a nomogram based on these variables and evaluated the predictive efficacy of the model. Additionally, we employed summary statistics from genome-wide association studies to conduct two-sample Mendelian randomization (MR) analyses on key variables influencing falls. Results Compared to the control group, we identified osteoporosis, motor dysfunction, higher Hoehn and Yahr scale as significant risk factors for falls in PD patients. Conversely, treatment with levodopa and a higher level of education exhibited a protective effect against the risk of falling. MR analysis further confirmed a causal relationship between osteoporosis, education level and falls in PD patients. Conclusion Osteoporosis and educational attainment are correlated with falls in Parkinson's disease.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Intensive Care Medicine, ShenzhenBaoan People's Hospital, Shenzhen, China
- Department of Neurological Center, ShenzhenBaoan People's Hospital, Shenzhen, China
| | - Yuehui Zhang
- Department of Intensive Care Medicine, ShenzhenBaoan People's Hospital, Shenzhen, China
| | - Yuexin Yan
- Department of Intensive Care Medicine, ShenzhenBaoan People's Hospital, Shenzhen, China
| | - Xiangxu Kong
- Department of Intensive Care Medicine, ShenzhenBaoan People's Hospital, Shenzhen, China
| | - Shengyuan Su
- Department of Intensive Care Medicine, ShenzhenBaoan People's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Conde CI, Lang C, Baumann CR, Easthope CA, Taylor WR, Ravi DK. Triggers for freezing of gait in individuals with Parkinson's disease: a systematic review. Front Neurol 2023; 14:1326300. [PMID: 38187152 PMCID: PMC10771308 DOI: 10.3389/fneur.2023.1326300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Freezing of Gait (FOG) is a motor symptom frequently observed in advanced Parkinson's disease. However, due to its paroxysmal nature and diverse presentation, assessing FOG in a clinical setting can be challenging. Before FOG can be fully investigated, it is critical that a reliable experimental setting is established in which FOG can be evoked in a standardized manner, but the efficacy of various gait tasks and triggers for eliciting FOG remains unclear. Objectives This study aimed to conduct a systematic review of the existing literature and evaluate the available evidence for the relationship between specific motor tasks, triggers, and FOG episodes in individuals with Parkinson's disease (PwPD). Methods We conducted a literature search on four online databases (PubMed, Web of Science, EMBASE, and Cochrane Library) using the keywords "Parkinson's disease," "Freezing of Gait", "triggers" and "tasks". A total of 128 articles met the inclusion criteria and were included in our analysis. Results The review found that a wide range of gait tasks were employed in studies assessing FOG among PD patients. However, three tasks (turning, dual tasking, and straight walking) emerged as the most frequently used. Turning (28%) appears to be the most effective trigger for eliciting FOG in PwPD, followed by walking through a doorway (14%) and dual tasking (10%). Conclusion This review thereby supports the utilisation of turning, especially a 360-degree turn, as a reliable trigger for FOG in PwPD. This finding could be beneficial to clinicians conducting clinical evaluations and researchers aiming to assess FOG in a laboratory environment.
Collapse
Affiliation(s)
| | - Charlotte Lang
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Christian R. Baumann
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
| | - Chris A. Easthope
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
- Lake Lucerne Institute, Vitznau, Switzerland
- creneo Foundation – Center for Interdisciplinary Research, Vitznau, Switzerland
| | - William R. Taylor
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- The LOOP Zurich – Medical Research Center, Zürich, Switzerland
| | - Deepak K. Ravi
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Korkusuz S, Seçkinoğulları B, Özcan A, Demircan EN, Çakmaklı GY, Armutlu K, Yavuz F, Elibol B. Effects of freezing of gait on balance in patients with Parkinson's disease. Neurol Res 2023; 45:407-414. [PMID: 36413435 DOI: 10.1080/01616412.2022.2149510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of the study was to evaluate the effects of freezing of gait (FOG) on static and dynamic balance. METHODS Twenty patients with Parkinson's disease with and without FOG [PD+FOG (68,6±6,39 years) and PD-FOG group (70,6±4,57 years)] and 10 healthy individuals (68,4±4,92 years) with similar demographic characteristics were included in the study. Balance was compared between the three groups. Balance was evaluated with clinical tests Limits of stability (LoS) and body sway were measured using the E-LINK FP3 Force Plate and the Korebalance Balance Evaluation System, which measure the balance in static and dynamic conditions. Center of pressure (COP) change and average sway velocity were evaluated with the Zebris RehaWalk system. RESULTS Total and subscale scores of the Unified Parkinson's Disease Rating Scale were significantly higher in the PD+FOG group (p<0.05). The balance test results for both groups were similar (p>0.05). The PD+FOG group performed worse on the computerized static balance tests, the COP analysis, and the dynamic balance total score than the other two groups (p<0.05). The PD+FOG group had significantly greater sustained weight deviation than the healthy controls (p<0.05). Patients with Parkinson's disease had a lower LoS in the posterior direction than healthy controls (p<0.05). DISCUSSION FOG affects the dynamic balance more negatively than the static balance. In addition, FOG reduces LoS in the posterior direction and increases body sway in the anterior-posterior direction, which can lead to falls.
Collapse
Affiliation(s)
- Süleyman Korkusuz
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Büşra Seçkinoğulları
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Ayşenur Özcan
- Department of Physical Therapy and Rehabilitation, Çankırı Karatekin University, Çankırı, Turkey
| | - Emine Nur Demircan
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Gül Yalçın Çakmaklı
- School of Medicine, Neurology Department, Hacettepe University, Ankara, Turkey
| | - Kadriye Armutlu
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Ferdi Yavuz
- Faculty of Health Sciences, European University of Lefke, Lefke, Cyprus
| | - Bülent Elibol
- School of Medicine, Neurology Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Zambrano K, Barba D, Castillo K, Noboa L, Argueta-Zamora D, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. Fighting Parkinson's disease: the return of the mitochondria. Mitochondrion 2022; 64:34-44. [PMID: 35218960 DOI: 10.1016/j.mito.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, worldwide. PD neuro-energetically affects the extrapyramidal system, by the progressive loss of striatal dopaminergic neurons in the substantia nigra pars compacta, leading to motor impairment. During the progression of PD, there will be an increase in mitochondrial dysfunction, reactive oxygen species (ROS), stress and accumulation of α-synuclein in neurons. This results in mitochondrial mutations altering their function and fission-fusion mechanisms and central nervous system (CNS) degeneration. Intracellular mitochondrial dysfunction has been studied for a long time in PD due to the decline of mitochondrial dynamics inside neurons. Mitochondrial damage-associated molecular patterns (DAMPs) have been known to contribute to several CNS pathologies especially PD pathogenesis. New and exciting evidence regarding the exchange of mitochondria between healthy to damaged cells in the central nervous system (CNS) and the therapeutic use of the artificial mitochondrial transfer/transplant (AMT) marked a return of this organelle to develop innovative therapeutic procedures for PD. The focus of this review aims to shed light on the role of mitochondria, both intra and extracellularly in PD, and how AMT could be used to generate new potential therapies in the fight against PD. Moreover, we suggest that mitochondrial therapy could work as a preventative measure, motivating the field to move towards this goal.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Luis Noboa
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | | | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; 7 Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| |
Collapse
|
5
|
Fransson PA, Nilsson MH, Rehncrona S, Tjernström F, Magnusson M, Johansson R, Patel M. Deep brain stimulation in the subthalamic nuclei alters postural alignment and adaptation in Parkinson's disease. PLoS One 2021; 16:e0259862. [PMID: 34905546 PMCID: PMC8670690 DOI: 10.1371/journal.pone.0259862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.
Collapse
Affiliation(s)
| | - Maria H. Nilsson
- Department of Health Sciences, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stig Rehncrona
- Department of Neurosurgery, Lund University, Lund, Sweden
| | | | - Måns Magnusson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Johansson
- Department of Automatic Control, Lund University, Lund, Sweden
| | - Mitesh Patel
- School of Medicine & Clinical Practice, Faculty of Science, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
6
|
Liu YT, Tsai HT, Hsu CY, Lin YN. Effects of orthopedic insoles on postural balance in patients with chronic stroke: A randomized crossover study. Gait Posture 2021; 87:75-80. [PMID: 33894465 DOI: 10.1016/j.gaitpost.2021.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Orthopedic insoles (OIs) with medial arch support and heel cushion are widely used to manage lower extremity injuries, but their effects on postural balance in patients with chronic stroke have not been adequately explored. METHODS Design: Double-blinded, sham-controlled, randomized crossover trial. PARTICIPANTS A total of 32 ambulatory patients (20 men and 12 women, aged between 30 and 76 years) with more than 6 months since stroke onset. INTERVENTIONS All participants received one assessment session wearing OIs and one session wearing sham insole (SI) in a random order with a 1-day interval. OUTCOMES Our primary outcome was the Berg Balance Scale score. Secondary outcomes included the Functional Reach Test, Timed Up and Go test, and computerized posturography. All were performed in both sessions. Subgroup analyses regarding demographic and functional variables were conducted to identify potential responders. RESULTS Significant between-insole differences favoring OIs were seen in all clinical tests (P < 0.05), but were seen only in the static medial-lateral sway in computerized posturography assessment (P = 0.04). An approximate 2-point difference in the BBS score favoring OIs was observed in all subgroups, not reaching the minimal clinically important difference. CONCLUSION The use of OIs generated small but significant positive effects on improving postural balance among patients with chronic stroke. Additional biomechanical and clinical studies are required to evaluate their potential for routine clinical use. TRIAL REGISTRATION NCT03194282.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Physical Medicine and Rehabilitation, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Han-Ting Tsai
- Department of Physical Medicine and Rehabilitation, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Yang Hsu
- Department of Physical Medicine and Rehabilitation, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yen-Nung Lin
- Department of Physical Medicine and Rehabilitation, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Pinto C, Salazar AP, Hennig EM, Kerr G, Pagnussat AS. Dual-task walking reduces lower limb range of motion in individuals with Parkinson's disease and freezing of gait: But does it happen during what events through the gait cycle? PLoS One 2020; 15:e0243133. [PMID: 33290429 PMCID: PMC7723257 DOI: 10.1371/journal.pone.0243133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022] Open
Abstract
Background It is unclear how dual-task gait influences the lower limb range of motion (RoM) in people with Parkinson’s disease (PD) and freezing of gait (FOG). The lower limb kinematics during dual-task gait might differ from regular gait, but during what events in the gait cycle? Methods This is an observational within-subjects study. Thirty-two individuals with PD and FOG underwent a gait analysis. Single and dual-task gait was assessed by a 3D motion analysis system and the RoM data of the lower limb were extracted from hips, knees and ankles in the sagittal plane. Dual-task assignment was performed using word-color interference test. To compare both gait conditions, we used two different analyses: (1) common discrete analysis to provide lower limb RoM and (2) Statistical Parametric Mapping analysis (SPM) to provide lower limb joint kinematics. A correlation between lower limb RoM and spatiotemporal gait parameters was also performed for each gait condition. Results Common discrete analysis evidenced reductions in RoM of hips, knees and ankles during the dual task gait when compared to single gait. SPM analysis showed reductions in flexion-extension of hip, knees and ankles joints when dual task was compared to single task gait. These reductions were observed in specific gait events as toe off (for knees and ankles) and heel strike (for all joints). The reduction in lower limb RoM was positively correlated with the reduction in step length and gait speed. Conclusions Lower limb joints kinematics were reduced during toe off and heel strike in dual task gait when compared to single gait. These findings might help physiotherapists to understand the influence of dual and single walking in lower limb RoM throughout the gait cycle in people with PD and FOG.
Collapse
Affiliation(s)
- Camila Pinto
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Paula Salazar
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ewald Max Hennig
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Graham Kerr
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Aline Souza Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Movement Analysis and Rehabilitation Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
8
|
Coelho DB, Ribeiro de Souza C, de Lima-Pardini AC, Treza RDC, Shida TKF, Silva-Batista C, Teixeira LA. Is freezing of gait correlated with postural control in patients with moderate-to-severe Parkinson's disease? Eur J Neurosci 2020; 53:1189-1196. [PMID: 33073415 DOI: 10.1111/ejn.15010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Freezing of gait (FoG) is one of the main reasons for movement initiation disorders and abnormal coupling of posture and gait in Parkinson's disease (PD). Patients with FoG have poor postural control when compared to patients without FoG. However, the nature of the interrelationship between FoG and domains of postural control remains unknown. The aim of this study was to estimate the association between different domains of postural control and severity of FoG in patients with moderate-to-severe PD. Thirty patients with idiopathic PD with FoG (age range 45-80 years, Hoehn & Yahr stages 3 and 4) participated in the study. We evaluated objective (FoG-ratio during turning task) and subjective (New Freezing of Gait Questionnaire, NFoG-Q) measures of FoG severity, reactive postural adjustments in response to an external perturbation, first step anticipatory adjustment for step initiation and quiet standing stability. In the multiple regression analysis, step initiation was the strongest significant correlation of the NFoG-Q score explaining 23% of the variance of the assessment. For the objective FoG measure, mediolateral CoP amplitude in quiet standing and mediolateral CoP amplitude in step initiation explained 39% of the variance of the FoG-ratio. As main conclusions, this study identified the association between objective and subjective measure for FoG severity and postural control domains. The results support conducting step initiation training during rehabilitation of individuals with FoG.
Collapse
Affiliation(s)
- Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil.,Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Caroline Ribeiro de Souza
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Renata de Castro Treza
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | | | - Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil
| | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Beretta VS, Vitório R, Nóbrega-Sousa P, Conceição NR, Orcioli-Silva D, Pereira MP, Gobbi LTB. Effect of Different Intensities of Transcranial Direct Current Stimulation on Postural Response to External Perturbation in Patients With Parkinson’s Disease. Neurorehabil Neural Repair 2020; 34:1009-1019. [DOI: 10.1177/1545968320962513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Habituation of postural response to perturbations is impaired in people with Parkinson’s disease (PD) due to deficits in cortico-basal pathways. Although transcranial direct current stimulation (tDCS) modulate cortico-basal networks, it remains unclear if it can benefit postural control in PD. Objective To analyze the effect of different intensities of anodal tDCS on postural responses and prefrontal cortex (PFC) activity during the habituation to the external perturbation in patients with PD (n = 24). Methods Anodal tDCS was applied over the primary motor cortex (M1) with 1 mA, 2 mA, and sham stimulation in 3 different sessions (~2 weeks apart) during 20 minutes immediately before the postural assessment. External perturbation (7 trials) was applied by a support base posterior translation (20 cm/s and 5 cm). Primary outcome measures included lower limb electromyography and center of pressure parameters. Measures of PFC activity are reported as exploratory outcomes. Analyses of variance (Stimulation Condition × Trial) were performed. Results Habituation of perturbation was evidenced independent of the stimulation conditions. Both active stimulation intensities had shorter recovery time and a trend for lower cortical activity in the stimulated hemisphere when compared to sham condition. Shorter onset latency of the medial gastrocnemius as well as lower cortical activity in the nonstimulated hemisphere were only observed after 2 mA concerning the sham condition. Conclusions tDCS over M1 improved the postural response to external perturbation in PD, with better response observed for 2 mA compared with 1 mA. However, tDCS seems to be inefficient in modifying the habituation of perturbation.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
- Oregon Health & Science University, Portland, OR, USA
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Núbia Ribeiro Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Marcelo Pinto Pereira
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| |
Collapse
|
10
|
Peterson DS, Van Liew C, Stuart S, Carlson-Kuhta P, Horak FB, Mancini M. Relating Parkinson freezing and balance domains: A structural equation modeling approach. Parkinsonism Relat Disord 2020; 79:73-78. [PMID: 32889503 DOI: 10.1016/j.parkreldis.2020.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND People with PD who exhibit freezing of gait (FOG) also exhibit poor balance compared to those who do not freeze. However, balance is a broad construct that can be subdivided into subdomains that include dynamic balance (gait), anticipatory postural adjustments (APAs) & gait initiation, postural sway in stance, and automatic postural responses (e.g., reactive stepping). Few studies have provided a robust investigation on how each of these domains is impacted by FOG, and no studies have compared balance across groups while rigorously controlling for disease severity. METHODS Structural equation modeling was used to evaluate the relationships between FOG and balance domains constructed as latent variables and controlling for disease severity. Domains included: dynamic balance (gait), APAs, postural sway, and reactive stepping. Models were run relating domains to both the presence and severity of FOG. RESULTS Latent variables reflecting domains of Gait and APAs, but not postural sway or reactive stepping, were significantly related to the severity of FOG. Models for presence of FOG showed the same results, as Gait and APAs, but not postural sway or reactive stepping, were related to presence of FOG. CONCLUSION These results are consistent with hypotheses that balance deficits in people with PD who freeze are most pronounced in gait and anticipatory postural adjustments. Reactive stepping and postural sway domains are less effected in PD patients who freeze compared to those who do not. These findings suggest that rehabilitative strategies focused on gait and APAs may be most effective for people with PD who freeze.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, College of Health Solutions, Phoenix, AZ, USA; VA Phoenix Health Care Systems, Phoenix, AZ, USA.
| | - Charles Van Liew
- Arizona State University, College of Health Solutions, Phoenix, AZ, USA
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
| | | | - Fay B Horak
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA
| | - Martina Mancini
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA
| |
Collapse
|
11
|
Sozzi S, Nardone A, Schieppati M. Adaptation of balancing behaviour during continuous perturbations of stance. Supra-postural visual tasks and platform translation frequency modulate adaptation rate. PLoS One 2020; 15:e0236702. [PMID: 32735602 PMCID: PMC7394407 DOI: 10.1371/journal.pone.0236702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
When humans are administered continuous and predictable perturbations of stance, an adaptation period precedes the steady state of balancing behaviour. Little information is available on the modulation of adaptation by vision and perturbation frequency. Moreover, performance of supra-postural tasks may modulate adaptation in as yet unidentified ways. Our purpose was to identify differences in adaptation associated to distinct visual tasks and perturbation frequencies. Twenty non-disabled adult volunteers stood on a platform translating 10 cm in antero-posterior (AP) direction at low (LF, 0.18 Hz) and high frequency (HF, 0.56 Hz) with eyes open (EO) and closed (EC). Additional conditions were reading a text fixed to platform (EO-TP) and reading a text stationary on ground (EO-TG). Peak-to-peak (PP) displacement amplitude and AP position of head and pelvis markers were computed for each of 27 continuous perturbation cycles. The time constant and extent of head and pelvis adaptation and the cross-correlation coefficients between head and pelvis were compared across visual conditions and frequencies. Head and pelvis mean positions in space varied little across conditions and perturbation cycles but the mean head PP displacements changed over time. On average, at LF, the PP displacement of the head and pelvis increased progressively. Adaptation was rapid or ineffective with EO, but slower with EO-TG, EO-TP, EC. At HF, the head PP displacement amplitude decreased progressively with fast adaptation rates, while the pelvis adaptation was not apparent. The results show that visual tasks can modulate the adaptation rate, highlight the effect of the perturbation frequency on adaptation and provide evidence of priority assigned to pelvis stabilization over visual tasks at HF. The effects of perturbation frequency and optic flow and their interaction with other sensory inputs and cognitive tasks on the adaptation strategies should be investigated in impaired individuals and considered in the design of rehabilitation protocols.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie, ICS Maugeri SPA SB, IRCCS, Institute of Pavia, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, IRCCS Institute of Pavia, Pavia, Italy
- * E-mail:
| | | |
Collapse
|
12
|
Park H, Youm C, Lee M, Noh B, Cheon SM. Turning Characteristics of the More-Affected Side in Parkinson's Disease Patients with Freezing of Gait. SENSORS 2020; 20:s20113098. [PMID: 32486303 PMCID: PMC7309092 DOI: 10.3390/s20113098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
This study investigated the turning characteristics of the more-affected limbs in Parkinson's disease (PD) patients in comparison with that of a control group, and in PD patients with freezing of gait (FOG; freezers) in comparison with those without FOG (non-freezers) for 360° and 540° turning tasks at the maximum speed. A total of 12 freezers, 12 non-freezers, and 12 controls participated in this study. The PD patients showed significantly longer total durations, shorter inner and outer step lengths, and greater anterior-posterior (AP) root mean square (RMS) center of mass (COM) distances compared to those for the controls. The freezers showed significantly greater AP and medial-lateral (ML) RMS COM distances compared to those of non-freezers. The turning task toward the inner step of the more-affected side (IMA) in PD patients showed significantly greater step width, total steps, and AP and ML RMS COM distances than that toward the outer step of the more-affected side (OMA). The corresponding results for freezers revealed significantly higher total steps and shorter inner step length during the 540° turn toward the IMA than that toward the OMA. Therefore, PD patients and freezers exhibited greater turning difficulty in performing challenging turning tasks such as turning with an increased angle and speed and toward the more-affected side.
Collapse
Affiliation(s)
- Hwayoung Park
- Biomechanics Laboratory, College of Health Sciences, Dong-A University, Busan 49315, Korea; (H.P.); (M.L.)
| | - Changhong Youm
- Biomechanics Laboratory, College of Health Sciences, Dong-A University, Busan 49315, Korea; (H.P.); (M.L.)
- Department of Healthcare and Science, College of Health Sciences, Dong-A University, Busan 49315, Korea;
- Correspondence: ; Tel.: +82-51-200-7830; Fax: +82-51-200-7505
| | - Myeounggon Lee
- Biomechanics Laboratory, College of Health Sciences, Dong-A University, Busan 49315, Korea; (H.P.); (M.L.)
| | - Byungjoo Noh
- Department of Healthcare and Science, College of Health Sciences, Dong-A University, Busan 49315, Korea;
| | - Sang-Myung Cheon
- Department of Neurology, School of Medicine, Dong-A University, Dongdaesin-dong 3-ga, Seo-gu, Busan 49315, Korea;
| |
Collapse
|
13
|
Rojas-Martínez M, Alonso JF, Jordanić M, Mañanas MÁ, Chaler J. Analysis of Muscle Load-Sharing in Patients With Lateral Epicondylitis During Endurance Isokinetic Contractions Using Non-linear Prediction. Front Physiol 2019; 10:1185. [PMID: 31632282 PMCID: PMC6779029 DOI: 10.3389/fphys.2019.01185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/02/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of this paper is to analyze muscle load-sharing in patients with Lateral Epicondylitis during dynamic endurance contractions by means of non-linear prediction of surface EMG signals. The proposed non-linear cross-prediction scheme was used to predict the envelope of an EMG signal and is based on locally linear models built in a lag-embedded Euclidean space. The results were compared with a co-activation index, a common measure based on the activation of a muscle pair. Non-linear prediction revealed changes in muscle coupling, that is load-sharing, over time both in a control group and Lateral Epicondylitis (p < 0.05), even when subjects did not report pain at the end of the exercise. These changes were more pronounced in patients, especially in the first part of the exercise and up to 50% of the total endurance time (p < 0.05). By contrast, the co-activation index showed no differences between groups. Results reflect the changing nature of muscular activation strategy, presumably because of the mechanisms triggered by fatigue. Strategies differ between controls and patients, pointing to an altered coordination in Lateral Epicondylitis.
Collapse
Affiliation(s)
- Mónica Rojas-Martínez
- Department of Bioengineering, Faculty of Engineering, Universidad El Bosque, Bogotá, Colombia
| | - Joan Francesc Alonso
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Mislav Jordanić
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Miguel Ángel Mañanas
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Joaquim Chaler
- PM&R Department, Egarsat, Terrassa, Spain.,EUSES-Bellvitge, Universitat de Girona, Universitat de Barcelona, ENTI, Barcelona, Spain
| |
Collapse
|
14
|
McKay GN, Harrigan TP, Brašić JR. A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson's disease. MethodsX 2019; 6:169-189. [PMID: 30733930 PMCID: PMC6355397 DOI: 10.1016/j.mex.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/27/2018] [Indexed: 01/23/2023] Open
Abstract
The assessment of Parkinson's disease currently relies on the history of the present illness, the clinical interview, the physical examination, and structured instruments. Drawbacks to the use of clinical ratings include the reliance on real-time human vision to quantify small differences in motion and significant inter-rater variability due to inherent subjectivity in scoring the procedures. Rating tools are semi-quantitative by design, however, in addition to significant inter-rater variability, there is inherent subjectivity in administering these tools, which are not blinded in clinical settings. Sophisticated systems to quantify movements are too costly to be used by some providers with limited resources. A simple procedure is described to obtain continuous quantitative measurements of movements of people with Parkinson's disease for objective analysis and correlation with visual observation of the movements. •Inexpensive accelerometers are attached to the upper and lower extremities of patients with Parkinson's disease and related conditions to generate a continuous, three-dimensional recorded representation of movements occurring while performing tasks to characterize the deficits of Parkinson's disease.•Movements of the procedure are rated by trained examiners live in real-time and later by videotapes.•The output of the instrumentation can be conveyed to experts for interpretation for diagnostic and therapeutic purposes.
Collapse
|