1
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
2
|
Liang J, Song Y, Belkacem AN, Li F, Liu S, Chen X, Wang X, Wang Y, Wan C. Prediction of balance function for stroke based on EEG and fNIRS features during ankle dorsiflexion. Front Neurosci 2022; 16:968928. [PMID: 36061607 PMCID: PMC9433808 DOI: 10.3389/fnins.2022.968928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Balance rehabilitation is exceedingly crucial during stroke rehabilitation and is highly related to the stroke patients’ secondary injuries (caused by falling). Stroke patients focus on walking ability rehabilitation during the early stage. Ankle dorsiflexion can activate the brain areas of stroke patients, similar to walking. The combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was a new method, providing more beneficial information. We extracted the event-related desynchronization (ERD), oxygenated hemoglobin (HBO), and Phase Synchronization Index (PSI) features during ankle dorsiflexion from EEG and fNIRS. Moreover, we established a linear regression model to predict Berg Balance Scale (BBS) values and used an eightfold cross validation to test the model. The results showed that ERD, HBO, PSI, and age were critical biomarkers in predicting BBS. ERD and HBO during ankle dorsiflexion and age were promising biomarkers for stroke motor recovery.
Collapse
Affiliation(s)
- Jun Liang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | | | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem,
| | - Fengmin Li
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Shizhong Liu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaona Chen
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinrui Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yueyun Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Wan
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- Chunxiao Wan,
| |
Collapse
|
3
|
Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7014. [PMID: 34770320 PMCID: PMC8588321 DOI: 10.3390/s21217014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Ileana Pirovano
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Robert Mihai Mira
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| |
Collapse
|
4
|
Koseki T, Kudo D, Katagiri N, Nanba S, Nito M, Tanabe S, Yamaguchi T. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults. BMC Neurosci 2021; 22:61. [PMID: 34645385 PMCID: PMC8513252 DOI: 10.1186/s12868-021-00665-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received β-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied β-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation. Results No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to (a) changes in Force CV immediately, at 10 min, and at 20 min after β-NMES (all cases, p < 0.05) and (b) changes in MEPs immediately after β-NMES (p = 0.01). No correlations were found after f-NMES. Conclusions Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the β-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.
Collapse
Affiliation(s)
- Tadaki Koseki
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Natsuki Katagiri
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Shigehiro Nanba
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
5
|
Guo Z, Qian Q, Wong K, Zhu H, Huang Y, Hu X, Zheng Y. Altered Corticomuscular Coherence (CMCoh) Pattern in the Upper Limb During Finger Movements After Stroke. Front Neurol 2020; 11:410. [PMID: 32477257 PMCID: PMC7240065 DOI: 10.3389/fneur.2020.00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/20/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Proximal compensation to the distal movements is commonly observed in the affected upper extremity (UE) of patients with chronic stroke. However, the cortical origin of this compensation has not been well-understood. In this study, corticomuscular coherence (CMCoh) and electromyography (EMG) analysis were adopted to investigate the corticomuscular coordinating pattern of proximal UE compensatory activities when conducting distal UE movements in chronic stroke. Method: Fourteen chronic stroke subjects and 10 age-matched unimpaired controls conducted isometric finger extensions and flexions at 20 and 40% of maximal voluntary contractions. Electroencephalogram (EEG) data were recorded from the sensorimotor area and EMG signals were captured from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC) to investigate the CMCoh peak values in the Beta band. EMG parameters, i.e., the EMG activation level and co-contraction index (CI), were analyzed to evaluate the compensatory muscular patterns in the upper limb. Result: The peak CMCoh with statistical significance (P < 0.05) was found shifted from the ipsilesional side to the contralesional side in the proximal UE muscles, while to the central regions in the distal UE muscle in chronic strokes. Significant differences (P < 0.05) were observed in both peak ED and FD CMCohs during finger extensions between the two groups. The unimpaired controls exhibited significant intragroup differences between 20 and 40% levels in extensions for peak ED and FD CMCohs (P < 0.05). The stroke subjects showed significant differences in peak TRI and BIC CMCohs (P < 0.01). No significant inter- or intra-group difference was observed in peak CMCoh during finger flexions. EMG parameters showed higher EMG activation levels in TRI and BIC muscles (P < 0.05), and higher CI values in the muscle pairs involving TRI and BIC during all the extension and flexion tasks in the stroke group than those in the control group (P < 0.05). Conclusion: The post-stroke proximal muscular compensations from the elbow to the finger movements were cortically originated, with the center mainly located in the contralesional hemisphere.
Collapse
Affiliation(s)
- Ziqi Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiuyang Qian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kiufung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hanlin Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
6
|
Carson RG, Buick AR. Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol 2019; 599:2375-2399. [PMID: 31495924 DOI: 10.1113/jp278298] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
The application of neuromuscular electrical stimulation (NMES) to paretic limbs has demonstrated utility for motor rehabilitation following brain injury. When NMES is delivered to a mixed peripheral nerve, typically both efferent and afferent fibres are recruited. Muscle contractions brought about by the excitation of motor neurons are often used to compensate for disability by assisting actions such as the formation of hand aperture, or by preventing others including foot drop. In this context, exogenous stimulation provides a direct substitute for endogenous neural drive. The goal of the present narrative review is to describe the means through which NMES may also promote sustained adaptations within central motor pathways, leading ultimately to increases in (intrinsic) functional capacity. There is an obvious practical motivation, in that detailed knowledge concerning the mechanisms of adaptation has the potential to inform neurorehabilitation practice. In addition, responses to NMES provide a means of studying CNS plasticity at a systems level in humans. We summarize the fundamental aspects of NMES, focusing on the forms that are employed most commonly in clinical and experimental practice. Specific attention is devoted to adjuvant techniques that further promote adaptive responses to NMES thereby offering the prospect of increased therapeutic potential. The emergent theme is that an association with centrally initiated neural activity, whether this is generated in the context of NMES triggered by efferent drive or via indirect methods such as mental imagery, may in some circumstances promote the physiological changes that can be induced through peripheral electrical stimulation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland.,School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alison R Buick
- School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK
| |
Collapse
|