1
|
Al-Chalabi M, Hegde P, Moore SR, Abouainain Y, Keener M, Parvez H, Eid J, Saleem S, Sheikh A. Systematic Review of the Clinical Characteristics and Management of Isaac Syndrome. J Clin Neuromuscul Dis 2023; 25:94-106. [PMID: 37962197 DOI: 10.1097/cnd.0000000000000460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Isaac syndrome (IS) is a condition characterized by peripheral nerve hyperexcitability caused by voltage-gated potassium channel (VGKC)-complex antibodies. Muscle twitching, stiffness, hypertrophy, and dysautonomic characteristics, such as hyperhidrosis, are common manifestations. The syndrome can be autoimmune or paraneoplastic, with thymoma being a common cause of paraneoplastic IS. Furthermore, this condition could be handed down from one generation to another. However, there is limited information regarding outcomes, relapses, associated syndromes, associated malignancies (other than thymoma), and treatment options. Despite its rarity, there remains a need for effective management strategies for patients with IS. To address this gap, we conducted a systematic review to summarize the most common and effective treatments of IS in immunomodulatory agents and symptomatic medications, as well as to describe outcomes, relapses, and associated malignancies. Altogether, this review serves to guide clinical practice recommendations for IS and highlight areas for further research. METHODS We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol to conduct a systematic review of cases reposted through the PubMed and Google Scholar databases. The terms "Isaac Syndrome" and "Acquired Neuromyotonia" were used. The Joanna Briggs Institute's critical appraisal tool was used to evaluate the quality of the included studies. RESULTS We identified 61 case reports and 4 case series, comprising a total of 70 patients with IS (mean age at onset: 42.5 ± 18 years, and 69% were males). Fourteen cases reported relapses. Thymoma was the most common malignancy associated with IS, followed by lymphoma. Among various serum antibodies, voltage-gated potassium channel-complex antibodies were the most reported antibodies elevated in IS (reported in 38 patients and elevated in 21 patients [55.2%]), followed by acetylcholine ganglionic receptor antibodies, which were reported in 30% of patients (n = 21) and were elevated in 5 cases. The most common electromyography findings were myokymic discharges (n = 22), followed by fasciculations (n = 21) and neuromyotonia (n = 19). For treatment, combining anticonvulsants such as carbamazepine with immunotherapy therapy showed the best results in controlling the symptoms. Among immunotherapy therapies, the combination of plasma exchange plus intravenous high-dose steroids achieved the best results in the acute treatment of IS ([n = 6], with improvement noted in 83.3% [n = 5] of cases). Among the symptomatic treatments with anticonvulsants, carbamazepine was the most efficacious anticonvulsant in treatment of IS, with an average effective dosing of 480 mg/day (carbamazepine was used in 32.3% of acute treatment strategies [n = 23], with improvement noted in 73.9% [n = 17] of cases). CONCLUSIONS IS a rare neuromuscular syndrome that tends to affect middle-aged men. These patients should be screened for thymoma and other malignancies such as lymphomas. The management of IS symptoms can be challenging, but based on our review, the combination of multiple immunosuppressives such as IV steroids and plasmapheresis with anticonvulsants such as carbamazepine seems to achieve the best results.
Collapse
Affiliation(s)
| | - Prajwal Hegde
- College of Medicine and Life Sciences, University of Toledo, OH; and
| | - Sara R Moore
- College of Medicine and Life Sciences, University of Toledo, OH; and
| | | | - Myles Keener
- College of Medicine and Life Sciences, University of Toledo, OH; and
| | - Hira Parvez
- Department of Neurology, University of Toledo, Toledo, OH
| | - Jeremy Eid
- College of Medicine and Life Sciences, University of Toledo, OH; and
| | - Sidra Saleem
- Department of Neurology, University of Toledo, Toledo, OH
| | - Ajaz Sheikh
- Department of Neurology, University of Toledo, Toledo, OH
- College of Medicine and Life Sciences, University of Toledo, OH; and
| |
Collapse
|
2
|
Peng Y, Yang H, Xue YH, Chen Q, Jin H, Liu S, Yao SY, Du MQ. An update on malignant tumor-related stiff person syndrome spectrum disorders: clinical mechanism, treatment, and outcomes. Front Neurol 2023; 14:1209302. [PMID: 37859648 PMCID: PMC10582361 DOI: 10.3389/fneur.2023.1209302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023] Open
Abstract
Stiff person syndrome (SPS) is a rare central nervous system disorder associated with malignancies. In this review, we retrieved information from PubMed, up until August 2023, using various search terms and their combinations, including SPS, stiff person syndrome spectrum disorders (SPSSDs), paraneoplastic, cancer, and malignant tumor. Data from peer-reviewed journals printed in English were organized to explain the possible relationships between different carcinomas and SPSSD subtypes, as well as related autoantigens. From literature searching, it was revealed that breast cancer was the most prevalent carcinoma linked to SPSSDs, followed by lung cancer and lymphoma. Furthermore, classic SPS was the most common SPSSD subtype, followed by stiff limb syndrome and progressive encephalomyelitis with rigidity and myoclonus. GAD65 was the most common autoantigen in patients with cancer and SPSSDs, followed by amphiphysin and GlyR. Patients with cancer subtypes might have multiple SPSSD subtypes, and conversely, patients with SPSSD subtypes might have multiple carcinoma subtypes. The first aim of this review was to highlight the complex nature of the relationships among cancers, autoantigens, and SPSSDs as new information in this field continues to be generated globally. The adoption of an open-minded approach to updating information on new cancer subtypes, autoantigens, and SPSSDs is recommended to renew our database. The second aim of this review was to discuss SPS animal models, which will help us to understand the mechanisms underlying the pathogenesis of SPS. In future, elucidating the relationship among cancers, autoantigens, and SPSSDs is critical for the early prediction of cancer and discovery of new therapeutic modalities.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shun-yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
3
|
Kim Y, Clemens EG, Farner JM, Londono-Barbaran A, Grab DJ, Dumler JS. Spotted fever rickettsia-induced microvascular endothelial barrier dysfunction is delayed by the calcium channel blocker benidipine. Biochem Biophys Res Commun 2023; 663:96-103. [PMID: 37121130 PMCID: PMC10362780 DOI: 10.1016/j.bbrc.2023.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
The tick-borne bacterium Rickettsia parkeri is an obligate intracellular pathogen that belongs to spotted fever group rickettsia (SFGR). The SFG pathogens are characterized by their ability to infect and rapidly proliferate inside host vascular endothelial cells that eventually result in impairment of vascular endothelium barrier functions. Benidipine, a wide range dihydropyridine calcium channel blocker, is used to prevent and treat cardiovascular diseases. In this study, we tested whether benidipine has protective effects against rickettsia-induced microvascular endothelial cell barrier dysfunction in vitro. We utilized an in vitro vascular model consisting of transformed human brain microvascular endothelial cells (tHBMECs) and continuously monitored transendothelial electric resistance (TEER) across the cell monolayer. We found that during the late stages of infection when we observed TEER decrease and when there was a gradual increase of the cytoplasmic [Ca2+], benidipine prevented these rickettsia-induced effects. In contrast, nifedipine, another cardiovascular dihydropyridine channel blocker specific for L-type Ca2+ channels, did not prevent R. parkeri-induced drop of TEER. Additionally, neither drug was bactericidal. These data suggest that growth of R. parkeri inside endothelial cells is associated with impairment of endothelial cell monolayer integrity due to Ca2+ flooding through specific, benidipine-sensitive T- or N/Q-type Ca2+ channels but not through nifedipine-sensitive L-type Ca2+ channels. Further study will be required to discern the exact nature of the Ca2+ channels and Ca2+ transporting system(s) involved, any contributions of the pathogen toward this process, as well as the suitability of benidipine and new dihydropyridine derivatives as complimentary therapeutic drugs against Rickettsia-induced vascular failure.
Collapse
Affiliation(s)
- Yuri Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Emily G Clemens
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Jennifer M Farner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Andres Londono-Barbaran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Dennis J Grab
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - J Stephen Dumler
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
4
|
Shao S, Shi G, Bi FF, Huang K. Pharmacological Treatments for Congenital Myasthenic Syndromes Caused by COLQ Mutations. Curr Neuropharmacol 2023; 21:1594-1605. [PMID: 36703579 PMCID: PMC10472815 DOI: 10.2174/1570159x21666230126145652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) refer to a series of inherited disorders caused by defects in various proteins. Mutation in the collagen-like tail subunit of asymmetric acetylcholinesterase (COLQ) is the second-most common cause of CMS. However, data on pharmacological treatments are limited. OBJECTIVE In this study, we reviewed related reports to determine the most appropriate pharmacological strategy for CMS caused by COLQ mutations. A literature review and meta-analysis were also performed. PubMed, MEDLINE, Web of Science, and Cochrane Library databases were searched to identify studies published in English before July 22, 2022. RESULTS A total of 42 studies including 164 patients with CMS due to 72 different COLQ mutations were selected for evaluation. Most studies were case reports, and none were randomized clinical trials. Our meta-analysis revealed evidence that β-adrenergic agonists, including salbutamol and ephedrine, can be used as first-line pharmacological treatments for CMS patients with COLQ mutations, as 98.7% of patients (74/75) treated with β-adrenergic agonists showed positive effects. In addition, AChEIs should be avoided in CMS patients with COLQ mutations, as 90.5% (105/116) of patients treated with AChEIs showed either no or negative effects. CONCLUSION (1) β-adrenergic agonist therapy is the first pharmacological strategy for treating CMS with COLQ mutations. (2) AChEIs should be avoided in patients with CMS with COLQ mutations.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Guanzhong Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Okauchi S, Shioya A, Iguchi K, Furukawa K, Satoh H. Myasthenia gravis that has developed long after radical resection of lung cancer: A case report. Exp Ther Med 2022; 24:554. [DOI: 10.3892/etm.2022.11492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shinichiro Okauchi
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba, Mito, Ibaraki 3100015, Japan
| | - Ayako Shioya
- Division of Neurology, Mito Medical Center, University of Tsukuba, Mito, Ibaraki 3100015, Japan
| | - Kesato Iguchi
- Division of Thoracic Surgery, Mito Medical Center, University of Tsukuba, Mito, Ibaraki 3100015, Japan
| | - Kinya Furukawa
- Division of Thoracic Surgery, Ibaraki Medical Center, Tokyo Medical University, Ami, Ibaraki 3000395, Japan
| | - Hiroaki Satoh
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba, Mito, Ibaraki 3100015, Japan
| |
Collapse
|
6
|
Huang K, Duan HQ, Li QX, Luo YB, Bi FF, Yang H. Clinicopathological-genetic features of congenital myasthenic syndrome from a Chinese neuromuscular centre. J Cell Mol Med 2022; 26:3828-3836. [PMID: 35670010 PMCID: PMC9279597 DOI: 10.1111/jcmm.17417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) encompasses a heterogeneous group of inherited disorders affecting nerve transmission across the neuromuscular junction. The aim of this study was to characterize the clinical, physiological, pathohistological and genetic features of nine unrelated Chinese patients with CMS from a single neuromuscular centre. A total of nine patients aged from neonates to 34 years were enrolled who exhibited initial symptoms. Physical examinations revealed that all patients exhibited muscle weakness. Muscle biopsies demonstrated multiple myopathological changes, including increased fibre size variation, myofibrillar network disarray, necrosis, myofiber grouping, regeneration, fibre atrophy and angular fibres. Genetic testing revealed six different mutated genes, including AGRN (2/9), CHRNE (1/9), GFPT1 (1/9), GMPPB (1/9), PLEC (3/9) and SCN4A (1/9). In addition, patients exhibited differential responses to pharmacological treatment. Prompt utilization of genetic testing will identify novel variants and expand our understanding of the phenotype of this rare syndrome. Our findings contribute to the clinical, pathohistological and genetic spectrum of congenital myasthenic syndrome in China.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Qian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Xiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Li KC, Liao MF, Wu YR, Lyu RK. Isaacs' syndrome as the initial presentation of malignant thymoma and associated with double-positive voltage-gated potassium channel complex antibodies, a case report. BMC Neurol 2022; 22:74. [PMID: 35246046 PMCID: PMC8895773 DOI: 10.1186/s12883-022-02584-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isaacs' syndrome is a peripheral nerve hyperexcitability (PNH) syndrome due to peripheral motor nerve instability. Acquired Isaacs' syndrome is recognized as a paraneoplastic autoimmune disease with possible pathogenic voltage-gated potassium channel (VGKC) complex antibodies. However, the longitudinal correlation between clinical symptoms, VGKC antibodies level, and drug response is still unclear. CASE PRESENTATION A 45-year-old man had progressive four limbs soreness, muscle twitching, cramps, and pain 4 months before admission. Electromyography (EMG) studies showed myokymic discharges, neuromyotonia, and an incremental response in the high-rate (50 Hz) repetitive nerve stimulation (RNS) test. Isaacs' syndrome was diagnosed based on clinical presentations and EMG reports. Serum studies showed positive VGKC complex antibodies, including leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies. The acetylcholine receptor antibody was negative. Whole-body computed tomography (CT) and positron emission tomography revealed a mediastinal tumor with the great vessels encasement, right pleura, and diaphragm seeding. Biopsy confirmed a World Health Organization type B2 thymoma, with Masaoka stage IVa. His symptoms gradually improved and both LGI1 and CASPR2 antibodies titer became undetectable after concurrent chemoradiotherapy (CCRT) and high dose steroid treatment. However, his Isaacs' syndrome recurred after the steroid was reduced 5 months later. Follow-up chest CT showed probable thymoma progression. LGI1 antibody turned positive again while CASPR2 antibody remained undetectable. CONCLUSIONS Our patient demonstrates that Isaacs' syndrome could be the initial and only neuromuscular manifestation of malignant thymoma. His Isaacs' syndrome is correlated well with the LGI1 antibody level. With an unresectable thymoma, long-term immunosuppressant therapy may be necessary for the management of Isaacs' syndrome in addition to CCRT for thymoma.
Collapse
Affiliation(s)
- Kuan-Ching Li
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, No.5, Fusing St., Gueishan Township, Taoyuan County, Taiwan
| | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, No.5, Fusing St., Gueishan Township, Taoyuan County, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, No.5, Fusing St., Gueishan Township, Taoyuan County, Taiwan
| | - Rong-Kuo Lyu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, No.5, Fusing St., Gueishan Township, Taoyuan County, Taiwan.
| |
Collapse
|
8
|
Colecraft HM, Trimmer JS. Controlling ion channel function with renewable recombinant antibodies. J Physiol 2022; 600:2023-2036. [PMID: 35238051 PMCID: PMC9058206 DOI: 10.1113/jp282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically-encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function. Abstract figure legend Two different approaches for controlling ion channel function using renewable recombinant antibodies. On the left, an externally applied intact IgG antibody (purple) binds to an extracellular domain of an ion channel (light blue) to control ion channel function. On the right, a genetically-encoded intrabody, in this example a camelid nanobody (green) fused to an effector molecule (red) binds to an intracellular auxiliary subunit of an ion channel (dark blue) to control ion channel function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James S Trimmer
- Department of Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Huang K, Bi FF, Yang H. A Systematic Review and Meta-Analysis of the Prevalence of Congenital Myopathy. Front Neurol 2021; 12:761636. [PMID: 34795634 PMCID: PMC8592924 DOI: 10.3389/fneur.2021.761636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Congenital myopathy constitutes a heterogeneous group of orphan diseases that are mainly classified on the basis of muscle biopsy findings. This study aims to estimate the prevalence of congenital myopathy through a systematic review and meta-analysis of the literature. Methods: The PubMed, MEDLINE, Web of Science, and Cochrane Library databases were searched for original research articles published in English prior to July 30, 2021. The quality of the included studies was assessed by a checklist adapted from STrengthening the Reporting of OBservational studies in Epidemiology (STROBE). To derive the pooled epidemiological prevalence estimates, a meta-analysis was performed using the random effects model. Heterogeneity was assessed using the Cochrane Q statistic as well as the I2 statistic. Results: A total of 11 studies were included in the systematic review and meta-analysis. Of the 11 studies included, 10 (90.9%) were considered medium-quality, one (9.1%) was considered low-quality, and no study was assessed as having a high overall quality. The pooled prevalence of congenital myopathy in the all-age population was 1.62 (95% CI, 1.13–2.11) per 100,000, while the prevalence in the child population was 2.76 (95% CI, 1.34–4.18) per 100,000. In the pediatric population, the prevalence among males was 2.92 (95% CI, −1.70 to 7.55) per 100,000, while the prevalence among females was 2.47 (95% CI, −1.67 to 6.61) per 100,000. The prevalence estimates of the all-age population per 100,000 were 0.20 (95% CI 0.10–0.35) for nemaline myopathy, 0.37 (95% CI 0.21–0.53) for core myopathy, 0.08 (95% CI −0.01 to 0.18) for centronuclear myopathy, 0.23 (95% CI 0.04–0.42) for congenital fiber-type disproportion myopathy, and 0.34 (95% CI, 0.24–0.44) for unspecified congenital myopathies. In addition, the prevalence estimates of the pediatric population per 100,000 were 0.22 (95% CI 0.03–0.40) for nemaline myopathy, 0.46 (95% CI 0.03–0.90) for core myopathy, 0.44 (95% CI 0.03–0.84) for centronuclear myopathy, 0.25 (95% CI −0.05 to 0.54) for congenital fiber-type disproportion myopathy, and 2.63 (95% CI 1.64–3.62) for unspecified congenital myopathies. Conclusions: Accurate estimates of the prevalence of congenital myopathy are fundamental to supporting public health decision-making. The high heterogeneity and the lack of high-quality studies highlight the need to conduct higher-quality studies on orphan diseases.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To give an overview of the recent data on three autoimmune neuromuscular junction disorders with the recent Food Drug Administration (FDA) approval of amifampridine [3,4-Diaminopyridine (3,4-DAP) and 3,4-diaminopyridine phosphate (3,4-DAPP) for the treatment of Lambert-Eaton myasthenic syndrome (LEMS). RECENT FINDINGS In LEMS, the most important recent development is the introduction of FDA approved amifampridine for the symptomatic treatment. Randomized controlled studies showed an extremely effective improvement with amifampridine with daily dose of ≤ 80 mg with minimal side reactions. The next important development is in the electrodiagnostic criteria. Now 10 s exercise and an incremental response ≥ 60% either after 10 s exercise or at the high-rate stimulation in the repetitive nerve stimulation test are recommended as the standard tests.In 2016, myasthenia-gravis Lambert-Eaton overlap syndrome (MLOS) was coined as new syndrome for patients with myasthenia gravis and LEMS combined symptoms in same patients.In Isaacs syndrome, voltage gated calcium channel antibody order is no longer recommended because of low specificity for immunotherapy responsive disorders. Instead, ' leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated like-2 (CASPR2) autoantibody tests' are recommended. SUMMARY In LEMS, amifampridine (3,4 DAP and 3,4-DAPP) is approved by the FDA as an effective symptomatic treatment. MLOS is coined as new syndrome recently. In Isaacs syndrome, LGI1 and CASPR2 antibody tests are recommended.
Collapse
|
11
|
Jitprapaikulsan J, Paul P, Thakolwiboon S, Mittal SO, Pittock SJ, Dubey D. Paraneoplastic neurological syndrome: an evolving story. Neurooncol Pract 2021; 8:362-374. [PMID: 34277016 DOI: 10.1093/nop/npab002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Paraneoplastic neurological syndrome (PNS) comprises a group of neurological disorders that result from a misguided immune response to the nervous system triggered by a distant tumor. These disorders frequently manifest before the diagnosis of the underlying neoplasm. Since the first reported case in 1888 by Oppenheim, the knowledge in this area has evolved rapidly. Several classic PNS have been described, such as limbic encephalitis, paraneoplastic cerebellar degeneration, encephalomyelitis, opsoclonus-myoclonus, sensory neuronopathy, Lambert-Eaton Myasthenic syndrome, and chronic gastrointestinal dysmotility. It is now recognized that PNS can have varied nonclassical manifestations that extend beyond the traditional syndromic descriptions. Multiple onconeural antibodies with high specificity for certain tumor types and neurological phenotypes have been discovered over the past 3 decades. Increasing use of immune checkpoint inhibitors (ICIs) has led to increased recognition of neurologic ICI-related adverse events. Some of these resemble PNS. In this article, we review the clinical, oncologic, and immunopathogenic associations of PNS.
Collapse
Affiliation(s)
- Jiraporn Jitprapaikulsan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pritikanta Paul
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois
| | - Smathorn Thakolwiboon
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Shivam Om Mittal
- Department of Neurology, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Huang K, Li J, Ito M, Takeda JI, Ohkawara B, Ogi T, Masuda A, Ohno K. Gene Expression Profile at the Motor Endplate of the Neuromuscular Junction of Fast-Twitch Muscle. Front Mol Neurosci 2020; 13:154. [PMID: 33117128 PMCID: PMC7549434 DOI: 10.3389/fnmol.2020.00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
The neuromuscular junction (NMJ) is a prototypic chemical synapse between the spinal motor neuron and the motor endplate. Gene expression profiles of the motor endplate are not fully elucidated. Collagen Q (ColQ) is a collagenic tail subunit of asymmetric forms of acetylcholinesterase and is driven by two distinct promoters. pColQ1 is active throughout the slow-twitch muscle, whereas pColQ1a is active at the motor endplate of fast-twitch muscle. We made a transgenic mouse line that expresses nuclear localization signal (NLS)-attached Cre recombinase under the control of pColQ1a (pColQ1a-Cre mouse). RiboTag mouse expresses an HA-tagged ribosomal subunit, RPL22, in cells expressing Cre recombinase. We generated pColQ1a-Cre:RiboTag mouse, and confirmed that HA-tagged RPL22 was enriched at the NMJ of tibialis anterior (TA) muscle. Next, we confirmed that Chrne and Musk that are specifically expressed at the NMJ were indeed enriched in HA-immunoprecipitated (IP) RNA, whereas Sox10 and S100b, markers for Schwann cells, and Icam1, a marker for vascular endothelial cells, and Pax3, a marker for muscle satellite cells, were scarcely detected. Gene set enrichment analysis (GSEA) of RNA-seq data showed that “phosphatidylinositol signaling system” and “extracellular matrix receptor interaction” were enriched at the motor endplate. Subsequent analysis revealed that genes encoding diacylglycerol kinases, phosphatidylinositol kinases, phospholipases, integrins, and laminins were enriched at the motor endplate. We first characterized the gene expression profile under translation at the motor endplate of TA muscle using the RiboTag technique. We expect that our gene expression profiling will help elucidate molecular mechanisms of the development, maintenance, and pathology of the NMJ.
Collapse
Affiliation(s)
- Kun Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jin Li
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Huang K, Duan HQ, Li QX, Luo YB, Yang H. Investigation of adult-onset multiple acyl-CoA dehydrogenase deficiency associated with peripheral neuropathy. Neuropathology 2020; 40:531-539. [PMID: 32608139 DOI: 10.1111/neup.12667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/03/2023]
Abstract
Multiple Acyl-CoA dehydrogenase deficiency (MADD), one of the most common lipid storage myopathies (LSMs), is a heterogeneous inherited muscular disorder that is pathologically characterized by numerous lipid droplets in muscle fibers due to lipid metabolism disturbance. MADD exhibits a wide range of clinical features, including skeletal muscle weakness and multisystem dysfunctions. However, MADD, as well as other types of LSM, associated with peripheral neuropathy has rarely been reported during the past four decades. Here, we present four Chinese patients affected by MADD with peripheral neuropathy in our neuromuscular center. Clinically, these four patients showed skeletal muscle weakness and prominent paresthesia. Muscle biopsy detected characteristic myopathological patterns of LSM, such as obvious lipid droplets in muscle fibers. Sural nerve biopsy revealed a severe reduction in number of myelinated nerve fibers, which is a typical neuropathological pattern of peripheral neuropathy. Causative ETFDH mutations were found in all four cases. The skeletal muscle weakness was rapidly improved after some treatments while paresthesia showed unsatisfactory improvement. The features of previously reported patients of this specific type are also summarized in this paper. We propose that MADD with peripheral neuropathy may be a new phenotypic subtype because the pathology and reaction to riboflavin treatment are different from those of traditional MADD, although further research on the precise pathogenesis and mechanisms is needed.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hui-Qian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Xiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Pérez CA, Shah EG, Butler IJ. Mercury-induced autoimmunity: Report of two adolescent siblings with Morvan syndrome "plus" and review of the literature. J Neuroimmunol 2020; 342:577197. [PMID: 32126315 DOI: 10.1016/j.jneuroim.2020.577197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Heavy metal toxicity is a global health concern. Mercury intoxication has been implicated in the etiology and pathogenesis of autoimmune disease, including Morvan syndrome. We describe two siblings with overlapping features of distinct autoimmune syndromes following accidental exposure to elemental mercury. Morvan syndrome was the predominant clinical phenotype. In addition to the characteristic anti-leucine-rich glioma-inactivated protein 1 (LGI1) and anti-contactin-associated protein-like 2 (Caspr2) autoantibodies, glutamic acid decarboxylase 65-kilodalton isoform (GAD65), and N-type and P/Q-type voltage-gated calcium channel (VGCC) antibodies were detected. Treatment with chelation therapy, glucocorticoids, and intravenous immunoglobulin was unsuccessful, but complete resolution of symptoms was achieved following treatment with rituximab. Herein, we perform an extensive review of the literature with a focus on the emerging concepts of mercury-induced autoimmunity and the role of mercury in the etiopathogenesis of autoimmune diseases of the nervous system.
Collapse
Affiliation(s)
- Carlos A Pérez
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Ekta G Shah
- Division of Child and Adolescent Neurology, Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ian J Butler
- Division of Child and Adolescent Neurology, Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
15
|
Pestronk A. Chronic Graft Versus Host Myopathies: Noninflammatory, Multi-Tissue Pathology With Glycosylation Disorders. J Neuropathol Exp Neurol 2019; 79:102-112. [DOI: 10.1093/jnen/nlz111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Myopathies during chronic graft-versus-host disease (cGvHD) are syndromes for which tissue targets and mechanisms of muscle damage remain incompletely defined. This study reviewed, and pathologically analyzed, 14 cGvHD myopathies, comparing myopathology to other immune myopathies. Clinical features in cGvHD myopathy included symmetric, proximal weakness, associated skin, gastrointestinal and lung disorders, a high serum aldolase (77%), and a 38% 2-year survival. Muscle showed noninflammatory pathology involving all 3 tissue components. Perimysial connective tissue had damaged structure and histiocytic cells. Vessel pathology included capillary loss, and reduced α-l-fucosyl and chondroitin sulfate moieties on endothelial cells. Muscle fibers often had surface pathology. Posttranslational glycosylation moieties on α-dystroglycan had reduced staining and abnormal distribution in 86%. Chondroitin-SO4 was reduced in 50%, a subgroup with 3-fold longer times from transplant to myopathy, and more distal weakness. cGvHD myopathies have noninflammatory pathology involving all 3 tissue components in muscle, connective tissue, small vessels, and myofibers. Abnormal cell surface glycosylation moieties are common in cGvHD myopathies, distinguishing them from other immune myopathies. This is the first report of molecular classes that may be immune targets in cGvHD. Disordered cell surface glycosylation moieties could produce disease-related tissue and cell damage, and be biomarkers for cGvHD features and activity.
Collapse
Affiliation(s)
- Alan Pestronk
- Departments of Neurology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri (AP)
| |
Collapse
|