1
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Hong-Yu L, Zhi-Jie Z, Juan L, Ting X, Wei-Chun H, Ning Z. Effects of Cerebellar Transcranial Direct Current Stimulation in Patients with Stroke: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:973-984. [PMID: 36028789 DOI: 10.1007/s12311-022-01464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cerebellum is involved in regulating motor, affective, and cognitive processes. It is a promising target for transcranial direct current stimulation (tDCS) intervention in stroke. OBJECTIVES To review the current evidence for cerebellar tDCS (ctDCS) in stroke, its problems, and its future directions. METHODS We searched the Web of Science, MEDLINE, CINAHL, EMBASE, Cochrane Library, and PubMed databases. Eligible studies were identified after a systematic literature review of the effects of ctDCS in stroke patients. The changes in assessment scale scores and objective indicators after stimulation were reviewed. RESULTS Eleven studies were included in the systematic review, comprising 169 stroke patients. Current evidence suggests that anode tDCS on the right cerebellar hemisphere does not appear to enhance language processing in stroke patients. Compared with the sham group, stroke patients showed a significant improvement in the verb generation task after cathodal ctDCS stimulation. However, with regard to naming, two studies came to the opposite conclusion. The contralesional anodal ctDCS is expected to improve standing balance but not motor learning in stroke patients. The bipolar bilateral ctDCS protocol to target dentate nuclei (PO10h and PO9h) had a positive effect on standing balance, goal-directed weight shifting, and postural control in stroke patients. CONCLUSIONS ctDCS appears to improve poststroke language and motor dysfunction (particularly gait). However, the evidence for these results was insufficient, and the quality of the relevant studies was low. ctDCS stimulation parameters and individual factors of participants may affect the therapeutic effect of ctDCS. Researchers need to take a more regulated approach in the future to conduct studies with large sample sizes. Overall, ctDCS remains a promising stroke intervention technique that could be used in the future.
Collapse
Affiliation(s)
- Li Hong-Yu
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China.
| | - Zhang Zhi-Jie
- Yinchuan Stomatology Hospital, Yinchuan, 750002, China
| | - Li Juan
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Xiong Ting
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - He Wei-Chun
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Zhu Ning
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| |
Collapse
|
3
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
4
|
Wang H, Xiong X, Zhang K, Wang X, Sun C, Zhu B, Xu Y, Fan M, Tong S, Guo X, Sun L. Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci Ther 2022; 29:619-632. [PMID: 36575865 PMCID: PMC9873524 DOI: 10.1111/cns.14065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Motor imagery training (MIT) has been widely used to improve hemiplegic upper limb function in stroke rehabilitation. The effectiveness of MIT is associated with the functional neuroplasticity of the motor network. Currently, brain activation and connectivity changes related to the motor recovery process after MIT are not well understood. AIM We aimed to investigate the neural mechanisms of MIT in stroke rehabilitation through a longitudinal intervention study design with task-based functional magnetic resonance imaging (fMRI) analysis. METHODS We recruited 39 stroke patients with moderate to severe upper limb motor impairment and randomly assigned them to either the MIT or control groups. Patients in the MIT group received 4 weeks of MIT therapy plus conventional rehabilitation, while the control group only received conventional rehabilitation. The assessment of Fugl-Meyer Upper Limb Scale (FM-UL) and Barthel Index (BI), and fMRI scanning using a passive hand movement task were conducted on all patients before and after treatment. The changes in brain activation and functional connectivity (FC) were analyzed. Pearson's correlation analysis was conducted to evaluate the association between neural functional changes and motor improvement. RESULTS The MIT group achieved higher improvements in FM-UL and BI relative to the control group after the treatment. Passive movement of the affected hand evoked an abnormal bilateral activation pattern in both groups before intervention. A significant Group × Time interaction was found in the contralesional S1 and ipsilesional M1, showing a decrease of activation after intervention specifically in the MIT group, which was negatively correlated with the FM-UL improvement. FC analysis of the ipsilesional M1 displayed the motor network reorganization within the ipsilesional hemisphere, which correlated with the motor score changes. CONCLUSIONS MIT could help decrease the compensatory activation at both hemispheres and reshape the FC within the ipsilesional hemisphere along with functional recovery in stroke patients.
Collapse
Affiliation(s)
- Hewei Wang
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Xin Xiong
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Kexu Zhang
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Xu Wang
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Changhui Sun
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Bing Zhu
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Yiming Xu
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic ResonanceEast China Normal UniversityShanghaiChina
| | - Shanbao Tong
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Xiaoli Guo
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Limin Sun
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|
5
|
Mark EB, Liao D, Nedergaard RB, Hansen TM, Drewes AM, Brock C. Central neuronal transmission in response to tonic cold pain is modulated in people with type 1 diabetes and severe polyneuropathy. J Diabetes Complications 2022; 36:108263. [PMID: 35842302 DOI: 10.1016/j.jdiacomp.2022.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
AIMS This study aimed to investigate cortical source activity and identify source generators in people with type 1 diabetes during rest and tonic cold pain. METHODS Forty-eight participants with type 1 diabetes and neuropathy, and 21 healthy controls were investigated with electroencephalography (EEG) during 5-minutes resting and 2-minutes tonic cold pain (immersing the hand into water at 2 °C). EEG power was assessed in eight frequency bands, and EEG source generators were analyzed using standardized low-resolution electromagnetic tomography (sLORETA). RESULTS Compared to resting EEG, cold pain EEG power differed in all bands in the diabetes group (all p < 0.001) and six bands in the controls (all p < 0.05). Source generator activity in the diabetes group was increased in delta, beta2, beta3, and gamma bands and decreased in alpha1 (all p < 0.006) with changes mainly seen in the frontal and limbic lobe. Compared to controls, people with diabetes had decreased source generator activity during cold pain in the beta2 and beta3 bands (all p < 0.05), mainly in the frontal lobe. CONCLUSIONS Participants with type 1 diabetes had altered EEG power and source generator activity predominantly in the frontal and limbic lobe during tonic cold pain. The results may indicate modulated central transmission and neuronal impairment.
Collapse
Affiliation(s)
- Esben Bolvig Mark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark
| | - Donghua Liao
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark
| | - Rasmus Bach Nedergaard
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tine Maria Hansen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Mech-Sense, Department of Radiology, Aalborg University Hospital, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Steno Diabetes Center Northern Jutland, Aalborg University Hospital, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Steno Diabetes Center Northern Jutland, Aalborg University Hospital, Denmark.
| |
Collapse
|
6
|
Sendi MSE, Salat DH, Miller RL, Calhoun VD. Two-step clustering-based pipeline for big dynamic functional network connectivity data. Front Neurosci 2022; 16:895637. [PMID: 35958983 PMCID: PMC9358255 DOI: 10.3389/fnins.2022.895637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dynamic functional network connectivity (dFNC) estimated from resting-state functional magnetic imaging (rs-fMRI) studies the temporally varying functional integration between brain networks. In a conventional dFNC pipeline, a clustering stage to summarize the connectivity patterns that are transiently but reliably realized over the course of a scanning session. However, identifying the right number of clusters (or states) through a conventional clustering criterion computed by running the algorithm repeatedly over a large range of cluster numbers is time-consuming and requires substantial computational power even for typical dFNC datasets, and the computational demands become prohibitive as datasets become larger and scans longer. Here we developed a new dFNC pipeline based on a two-step clustering approach to analyze large dFNC data without having access to huge computational power. Methods In the proposed dFNC pipeline, we implement two-step clustering. In the first step, we randomly use a sub-sample dFNC data and identify several sets of states at different model orders. In the second step, we aggregate all dFNC states estimated from all iterations in the first step and use this to identify the optimum number of clusters using the elbow criteria. Additionally, we use this new reduced dataset and estimate a final set of states by performing a second kmeans clustering on the aggregated dFNC states from the first k-means clustering. To validate the reproducibility of results in the new pipeline, we analyzed four dFNC datasets from the human connectome project (HCP). Results We found that both conventional and proposed dFNC pipelines generate similar brain dFNC states across all four sessions with more than 99% similarity. We found that the conventional dFNC pipeline evaluates the clustering order and finds the final dFNC state in 275 min, while this process takes only 11 min for the proposed dFNC pipeline. In other words, the new pipeline is 25 times faster than the traditional method in finding the optimum number of clusters and finding the final dFNC states. We also found that the new method results in better clustering quality than the conventional approach (p < 0.001). We show that the results are replicated across four different datasets from HCP. Conclusion We developed a new analytic pipeline that facilitates the analysis of large dFNC datasets without having access to a huge computational power source. We validated the reproducibility of the result across multiple datasets.
Collapse
Affiliation(s)
- Mohammad S. E. Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- *Correspondence: Mohammad S. E. Sendi,
| | - David H. Salat
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Robyn L. Miller
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- Vince D. Calhoun,
| |
Collapse
|
7
|
Vinehout K, Tynes K, Sotelo MR, Hyngstrom AS, McGuire JR, Schmit BD. Changes in Cortical Activity in Stroke Survivors Undergoing Botulinum Neurotoxin Therapy for Treatment of Focal Spasticity. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:735819. [PMID: 36188774 PMCID: PMC9397708 DOI: 10.3389/fresc.2021.735819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Background: Botulinum NeuroToxin-A (BoNT-A) relieves muscle spasticity and increases range of motion necessary for stroke rehabilitation. Determining the effects of BoNT-A therapy on brain neuroplasticity could help physicians customize its use and predict its outcome. Objective: The purpose of this study was to investigate the effects of Botulinum Toxin-A therapy for treatment of focal spasticity on brain activation and functional connectivity. Design: We used functional Magnetic Resonance Imaging (fMRI) to track changes in blood oxygen-level dependent (BOLD) activation and functional connectivity associated with BoNT-A therapy in nine chronic stroke participants, and eight age-matched controls. Scans were acquired before BoNT-A injections (W0) and 6 weeks after the injections (W6). The task fMRI scan consisted of a block design of alternating mass finger flexion and extension. The voxel-level changes in BOLD activation, and pairwise changes in functional connectivity were analyzed for BoNT-A treatment (stroke W0 vs. W6). Results: BoNT-A injection therapy resulted in significant increases in brain activation in the contralesional premotor cortex, cingulate gyrus, thalamus, superior cerebellum, and in the ipsilesional sensory integration area. Lastly, cerebellar connectivity correlated with the Fugl-Meyer assessment of motor impairment before injection, while premotor connectivity correlated with the Fugl-Meyer score after injection. Conclusion: BoNT-A therapy for treatment of focal spasticity resulted in increased brain activation in areas associated with motor control, and cerebellar connectivity correlated with motor impairment before injection. These results suggest that neuroplastic effects might take place in response to improvements in focal spasticity.
Collapse
Affiliation(s)
- Kaleb Vinehout
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kelsey Tynes
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Miguel R. Sotelo
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison S. Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - John R. McGuire
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Brian D. Schmit
| |
Collapse
|
8
|
Task effects on functional connectivity measures after stroke. Exp Brain Res 2021; 240:575-590. [PMID: 34860257 DOI: 10.1007/s00221-021-06261-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Understanding the effect of task compared to rest on detecting stroke-related network abnormalities will inform efforts to optimize detection of such abnormalities. The goal of this work was to determine whether connectivity measures obtained during an overt task are more effective than connectivity obtained during a "resting" state for detecting stroke-related changes in network function of the brain. This study examined working memory, discrete pedaling, continuous pedaling and language tasks. Functional magnetic resonance imaging was used to examine regional and inter-regional brain network function in 14 stroke and 16 control participants. Independent component analysis was used to identify 149 regions of interest (ROI). Using the inter-regional connectivity measurements, the weighted sum was calculated across only regions associated with a given task. Both inter-regional connectivity and regional connectivity were greater during each of the tasks as compared to the resting state. The working memory and discrete pedaling tasks allowed for detection of stroke-related decreases in inter-regional connectivity, while the continuous pedaling and language tasks allowed for detection of stroke-related enhancements in regional connectivity. These observations illustrate that task-based functional connectivity allows for detection of stroke-related changes not seen during resting states. In addition, this work provides evidence that tasks emphasizing different cognitive domains reveal different aspects of stroke-related reorganization. We also illustrate that within the motor domain, different tasks can reveal inter-regional or regional stroke-related changes, in this case suggesting that discrete pedaling required more central drive than continuous pedaling.
Collapse
|
9
|
Xu M, Lin R, Luo J, Tang C, Wang S, Wong J, Wu M, Huang J, Shi P, Gao A, Bai Y, Xie Y, Luo J, Yang Y, Cui S. Using brain functional magnetic resonance imaging to evaluate the effectiveness of acupuncture combined with mirror therapy on upper limb function in patients with cerebral ischemic stroke: a study protocol for a randomized, controlled trial. Trials 2021; 22:53. [PMID: 33436053 PMCID: PMC7805106 DOI: 10.1186/s13063-020-04955-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upper limb and hand motor dysfunction is one of the challenges in rehabilitation after cerebral ischemic stroke (CIS), and the clinical efficacy of rehabilitation needs to be improved. This study aims to combine Jin's three-needle acupuncture (JTN) therapy with mirror therapy (MT) for hemiplegia after CIS, objectively evaluate the clinical effects and safety of JTN to treat upper limb dysfunction, and use functional magnetic resonance imaging (fMRI) of the brain to investigate the central mechanisms of the effects, which would provide a powerful evidence-based medical basis for further supporting the application of JTN combined with MT. METHODS/DESIGN This trial will be a single-blind, randomized controlled study. Patients who meet the study criteria will be recruited and randomly assigned to either the combined treatment group (JTN+MT) or the JTN group. Both interventions will be conducted for 6 days per week and last for 4 weeks. The primary outcome will be the effective rate based on the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Other outcome measures will include scores on the motor assessment scale (MAS), action research arm test (ARAT), activities of daily living (ADL) scale, and fMRI analyses. For safety evaluation, adverse events will be observed and recorded. DISCUSSION This study may help to identify the efficacy and safety of acupuncture combined with MT for upper limb dysfunction after CIS and explore the central mechanisms with brain fMRI. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-IOR-17012174 . Registered on 5 April 2017.
Collapse
Affiliation(s)
- Mingzhu Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, Guangdong, China.,Shenzhen Hospital, Peking University, Shenzhen, 518034, Guangdong, China
| | - Run Lin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China
| | - Jing Luo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China.
| | - Chunzhi Tang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhui Wang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China
| | - John Wong
- MGH Institute of Health Professions, Boston, MA, USA
| | - Meng Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China
| | - Jianting Huang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ang Gao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Yuqian Bai
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, China
| | - Ying Xie
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, China
| | - Jun Luo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, China
| | - Yunqiu Yang
- Macau University of Science and Technology, Macau, 519020, China
| | - Shaoyang Cui
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China.
| |
Collapse
|