1
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Miguel Telega L, Berti R, Blazhenets G, Domogalla LC, Steinacker N, Omrane MA, Meyer PT, Coenen VA, Eder AC, Döbrössy MD. Reserpine-induced rat model for depression: Behavioral, physiological and PET-based dopamine receptor availability validation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111013. [PMID: 38636702 DOI: 10.1016/j.pnpbp.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Raissa Berti
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - M Aymen Omrane
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Máté D Döbrössy
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Jędrejko K, Catlin O, Stewart T, Anderson A, Muszyńska B, Catlin DH. Unauthorized ingredients in "nootropic" dietary supplements: A review of the history, pharmacology, prevalence, international regulations, and potential as doping agents. Drug Test Anal 2023. [PMID: 37357012 DOI: 10.1002/dta.3529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 06/27/2023]
Abstract
The first nootropic prohibited in sport was fonturacetam (4-phenylpiracetam, carphedon) in 1998. Presented here 25 years later is a broad-scale consideration of the history, pharmacology, prevalence, regulations, and doping potential of nootropics viewed through a lens of 50 selected dietary supplements (DS) marketed as "cognitive enhancement," "brain health," "brain boosters," or "nootropics," with a focus on unauthorized ingredients. Nootropic DS have risen to prominence over the last decade often as multicomponent formulations of bioactive ingredients presenting compelling pharmacological questions and potential public health concerns. Many popular nootropics are unauthorized food or DS ingredients according to the European Commission including huperzine A, yohimbine, and dimethylaminoethanol; unapproved pharmaceuticals like phenibut or emoxypine (mexidol); previously registered drugs like meclofenoxate or reserpine; EU authorized pharmaceuticals like piracetam or vinpocetine; infamous doping agents like methylhexaneamine or dimethylbutylamine; and other investigational substances and peptides. Several are authorized DS ingredients in the United States resulting in significant global variability as to what qualifies as a legal nootropic. Prohibited stimulants or ß2-agonists commonly used in "pre-workout," "weight loss," or "thermogenic" DS such as octodrine, hordenine, or higenamine are often stacked with nootropic substances. While stimulants and ß2-agonists are defined as doping agents by the World Anti-Doping Agency (WADA), many nootropics are not, although some may qualify as non-approved substances or related substances under catch-all language in the WADA Prohibited List. Synergistic combinations, excessive dosing, or recently researched pharmacology may justify listing certain nootropics as doping agents or warrant additional attention in future regulations.
Collapse
Affiliation(s)
- Karol Jędrejko
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Kraków, Poland
| | - Oliver Catlin
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
| | - Timothy Stewart
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
| | - Ashley Anderson
- International Sports Pharmacists Network, Fort Collins, Colorado, USA
| | - Bożena Muszyńska
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Kraków, Poland
| | - Don H Catlin
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
- Department of Medicine and Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
4
|
Tharwat EK, Abdelaty AO, Abdelrahman AI, Elsaeed H, Elgohary A, El-Feky AS, Ebrahim YM, Sakraan A, Ismail HA, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed HS, Mohammed FF, Radwan NM, Ahmed NA. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson's disease induced by reserpine. Metab Brain Dis 2023; 38:1513-1529. [PMID: 36847968 PMCID: PMC10185619 DOI: 10.1007/s11011-023-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.
Collapse
Affiliation(s)
- Engy K Tharwat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed O Abdelaty
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | | - Ayatallah Elgohary
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Amena S El-Feky
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Sakraan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hossam A Ismail
- Biophysics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Center, Dokki, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nawal A Ahmed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson’s disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol 2022; 13:944376. [PMID: 36313295 PMCID: PMC9597253 DOI: 10.3389/fphar.2022.944376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Reserpine is an effective drug for the clinical treatment of hypertension. It also induces Parkinson’s disease (PD)-like symptoms in humans and animals possible through the inhibition of monoamine vesicular transporters, thus decreasing the levels of monoamine neurotransmitters in the brain. However, the precise mechanisms remain unclear. Herein, we aimed to develop a preclinical reserpine model recapitulating the non-motor and motor symptoms of PD and investigate the underlying potential cellular mechanisms. Incubation of reserpine induced apoptosis, led to the accumulation of intracellular reactive oxygen species (ROS), lowered DNA methylation of alpha-synuclein gene, resulted in alpha-synuclein protein deposition, and elevated the ratio of LC3-II/LC3-Ⅰ and p62 in cultured SH-SY5Y cells. Feeding reserpine dose-dependently shortened the lifespan and caused impairment of motor functions in male and female Drosophila. Moreover, long-term oral administration of reserpine led to multiple motor and non-motor symptoms, including constipation, pain hypersensitivity, olfactory impairment, and depression-like behaviors in mice. The mechanistic studies showed that chronic reserpine exposure caused hypomethylation of the alpha-synuclein gene and up-regulated its expression and elevated the ratio of LC3-II/LC3-Ⅰ and expression of p62 in the substantia nigra of mice. Thus, we established preclinical animal models using reserpine to recapitulate the motor and non-motor symptoms of PD. Chronic reserpine exposure epigenetically elevated the levels of alpha-synuclein expression possible by lowering the DNA methylation status and inducing autophagic impairment in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| |
Collapse
|
6
|
Mendes RF, Bellozi PMQ, Conegundes JLM, Fernandes MF, Pinto NCC, Silva JMDA, Costa JCDA, Chedier LM, Dias ACP, Scio E. In vivo anti-inflammatory and antinociceptive effects, and in vitro antioxidant, antiglycant and anti-neuroinflammatory actions of Syzygium malaccense. AN ACAD BRAS CIENC 2021; 93:e20210457. [PMID: 34852065 DOI: 10.1590/0001-3765202120210457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Syzygium malaccense is popularly used to treat inflammation and pain-related ailments. The species was assessed regarding its antioxidant, antiglycant, anti-inflammatory, including anti-neuroinflammatory, and antinociceptive activities. Different models were employed to measure S. malaccense extract (ESM) antioxidant activity. The antiglycant activity was determined using the glucose-induced protein glycation model. LPS-induced neuroinflammation on murine BV-2 microglial cell line was used for anti-neuroinflammatory activity evaluation. The croton oil-induced ear edema test was accomplished to evaluate the in vivo anti-inflammatory activity. Acetic acid-induced writhing together with formalin-induced paw licking assays were performed to evaluate the antinociceptive potential. Finally, the chemical characterization was accomplished by a UHPLC-MS analysis. ESM presented relevant antioxidant and antiglycant activity. NO production by BV-2 cells was reduced, indicating the relevant neuroprotective activity. ESM significantly decreased the mice ear edema induced by croton oil and the nociceptive stimulus induced by acetic acid and formalin by central and peripheral mechanisms. The flavonoids myricitrin, myricetin and quercetin were identified and, as far as we know, the alkaloid reserpine was reported in the species for the first time. The antioxidant and antiglycant potential of ESM, may be related to the in vivo anti-inflammatory and antinociceptive effects, and to the in vitro neuroinflammation inhibition.
Collapse
Affiliation(s)
- Renata F Mendes
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Paula M Q Bellozi
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Jéssica L Mota Conegundes
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria F Fernandes
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Nícolas C C Pinto
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Josiane M DA Silva
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Juliana C DA Costa
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Luciana M Chedier
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Departamento de Botânica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Alberto C P Dias
- Universidade do Minho, Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Rua da Universidade, s/n, 4710-057 Braga, Portugal.,Universidade do Minho, Centro de Engenharia Biológica (CEB), Rua da Universidade, s/n, 4710-057 Braga, Portugal
| | - Elita Scio
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Laboratório de Produtos Naturais Bioativos (LPNB), Departamento de Bioquímica, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| |
Collapse
|
7
|
Jędrejko K, Lazur J, Muszyńska B. Risk Associated with the Use of Selected Ingredients in Food Supplements. Chem Biodivers 2021; 18:e2000686. [PMID: 33410585 DOI: 10.1002/cbdv.202000686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
This review focuses on four new product categories of food supplements: pre-workout, fat burner/thermogenic, brain/cognitive booster, and hormone/testosterone booster. Many food supplements have been shown to be contaminated with unauthorized substances. In some cases, the ingredients in the new categories of dietary supplements were medicinal products or new synthetic compounds added without performing clinical trials. Some of the new ingredients in dietary supplements are plant materials that are registered in the pharmacopoeia as herbal medicines. In other cases, dietary supplements may contain plant materials that have no history of human use and are often used as materials to 'camouflage' stimulants. In the European Union, new ingredients of dietary supplements, according to European Food Safety Authority or unauthorized novel food. Furthermore, selected ingredients in dietary supplements may be prohibited in sports and are recognized as doping agents by World Anti-Doping Agency.
Collapse
Affiliation(s)
- Karol Jędrejko
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| | - Jan Lazur
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| | - Bożena Muszyńska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| |
Collapse
|