1
|
Solaz S, Cardenal‐Muñoz E, Muñoz A, Giorgi S, Pallardó FV, Romá‐Mateo C, Aibar JÁ. Navigating Dravet syndrome in Spain: A cross-sectional study of diagnosis, management, and care coordination. Epilepsia Open 2024; 9:1806-1815. [PMID: 38984594 PMCID: PMC11450586 DOI: 10.1002/epi4.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVES Dravet syndrome (DS) is a rare form of refractory epilepsy that begins in the first year of life. Approximately 85% of patients have a mutation in the SCN1A gene, which encodes a voltage-gated sodium channel. The main objective of the present work was to assess the degree of knowledge of DS among Spanish primary care (PC) professionals, the communication flow between them and the pediatric neurologists (PNs), and the services available and resources offered to patients in Spain when searching for a diagnosis and adequate treatment. METHODS Two anonymized online surveys on DS diagnosis and patient management in PC were conducted with Spanish PC pediatricians (PCPs) and caregivers of DS patients in Spain. RESULTS Most PCPs are aware of genetic epilepsy but lack full knowledge of DS and patient advocacy groups (PAGs). Access to epilepsy treatments varies among regions, with many referrals to hospitals and pediatric neurologists. Diagnosis is often delayed, with misdiagnoses and frequent emergency room (ER) visits. Treatment involves multiple drugs, and sodium channel blockers are used, which are contraindicated in DS treatment. Improved training, resources, and communication are needed for early diagnosis. SIGNIFICANCE To improve the care and treatment of DS patients in Spain, early diagnosis is required and, possibly, specific efforts aimed at identifying patients in adulthood, generating socio-sanitary structures that integrate social and health services to provide comprehensive care, taking into account the different features and comorbidities of the disease. PLAIN LANGUAGE SUMMARY Dravet syndrome (DS) is a form of genetic epilepsy that starts within the first year of life. We present a study showing that, while family doctors are aware of genetic epilepsies, many don't have a complete understanding of DS. Unfortunately, getting the right diagnosis can take a long time, leading to unnecessary visits to the emergency room. Patients often need several medications, and sometimes they're given drugs that aren't recommended for DS. The takeaway is that training for doctors, more resources, and improved communication could help creating better healthcare systems and therefore give easier access to the right therapies.
Collapse
Affiliation(s)
- Sandra Solaz
- Departamento de Salud Hospital La FeCentro de Salud de SillaValenciaSpain
| | | | | | | | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and DentistryUniversitat de València (UV)ValenciaSpain
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Institute of Health Carlos IIIValenciaSpain
- INCLIVA Biomedical Research InstituteValenciaSpain
| | - Carlos Romá‐Mateo
- Department of Physiology, Faculty of Medicine and DentistryUniversitat de València (UV)ValenciaSpain
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Institute of Health Carlos IIIValenciaSpain
- INCLIVA Biomedical Research InstituteValenciaSpain
| | | |
Collapse
|
2
|
Chengyan L, Chupeng X, You W, Yinhui C, Binglong H, Dang A, Ling L, Chuan T. Identification of genetic causes in children with unexplained epilepsy based on trio-whole exome sequencing. Clin Genet 2024; 106:140-149. [PMID: 38468460 DOI: 10.1111/cge.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Genotype and clinical phenotype analyses of 128 children were performed based on whole exome sequencing (WES), providing a reference for the provision of genetic counseling and the precise diagnosis and treatment of epilepsy. A total of 128 children with unexplained epilepsy were included in this study, and all their clinical data were analyzed. The children's treatments, epilepsy control, and neurodevelopmental levels were regularly followed up every 3 months. The genetic diagnostic yield of the 128 children with epilepsy is 50.8%, with an SNV diagnostic yield of 39.8% and a CNV diagnostic yield of 12.5%. Among the 128 children with epilepsy, 57.0% had onset of epilepsy in infancy, 25.8% have more than two clinical seizure forms, 62.5% require two or more anti-epileptic drug treatments, and 72.7% of the children have varying degrees of psychomotor development retardation. There are significant differences between ages of onset, neurodevelopmental levels and the presence of drug resistance in the genetic diagnostic yield (all p < 0.05). The 52 pathogenic/likely pathogenic SNVs involve 31 genes, with genes encoding ion channels having the largest number of mutations (30.8%). There were 16 cases of pathogenic/possibly pathogenic CNVs, among which the main proportions of CNVs were located in chromosome 15 and chromosome 16. Trio-WES is an essential tool for the genetic diagnosis of unexplained epilepsy, with a genetic diagnostic yield of up to 50.8%. Early genetic testing can provide an initiate appropriate therapies and accurate molecular diagnosis.
Collapse
Affiliation(s)
- Li Chengyan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xue Chupeng
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
- Department of Pediatrics, Shantou Central Hospital, Shantou, People's Republic of China
| | - Wang You
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Chen Yinhui
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Huang Binglong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Ao Dang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Liu Ling
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Tian Chuan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
3
|
Mir A, Song Y, Lee H, Nadeali Z, Akbarian F, Tabatabaiefar MA. Molecular and phenotypical findings of a novel de novo SYNGAP1 gene variant in an 11-year-old Iranian boy with intellectual disability. Lab Med 2024; 55:204-208. [PMID: 37467311 DOI: 10.1093/labmed/lmad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE Intellectual developmental disorder (IDD) type 5 is an autosomal dominant (AD) disorder and is characterized by intellectual disability (ID), psychomotor developmental delay, variable autism phenotypes, microcephaly, and seizure. IDD can be caused by mutations in the SYNGAP1 gene, which encodes a Ras GTPase-activating protein. This study revealed a novel de novo nonsense variant in SYNGAP1. The identification of such variants is essential for genetic counseling in patients and their families. METHODS Exome sequencing implicated the causative variant. Sanger sequencing and cosegregation analyses were used to confirm the variant. Multiple in silico analysis tools were applied to interpret the variant using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS The de novo NM_006772.3(SYNGAP1):c.3685C>T variant was identified in an 11-year-old boy with severe intellectual disability, neurodevelopmental delay, speech disorder, ataxia, specific dysmorphic facial features, and aggressive behavior. CONCLUSION The current study findings expand the existing knowledge of variants in SYNGAP1 that have been previously associated with nonsyndromic intellectual disability and autism, extending the spectrum of phenotypes associated with this gene. The data have implications for genetic diagnosis and counseling in similar phenotypic presentations.
Collapse
Affiliation(s)
- Atefeh Mir
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yongjun Song
- Division of Medical Genetics, 3Billion, Seoul, South Korea
| | - Hane Lee
- Division of Medical Genetics, 3Billion, Seoul, South Korea
| | - Zakiye Nadeali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Akbarian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- GenTArget Corp (GTAC), Deputy of Research and Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Cavirani B, Spagnoli C, Caraffi SG, Cavalli A, Cesaroni CA, Cutillo G, De Giorgis V, Frattini D, Marchetti GB, Masnada S, Peron A, Rizzi S, Varesio C, Spaccini L, Vignoli A, Canevini MP, Veggiotti P, Garavelli L, Fusco C. Genetic Epilepsies and Developmental Epileptic Encephalopathies with Early Onset: A Multicenter Study. Int J Mol Sci 2024; 25:1248. [PMID: 38279250 PMCID: PMC10816990 DOI: 10.3390/ijms25021248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The genetic causes of epilepsies and developmental and epileptic encephalopathies (DEE) with onset in early childhood are increasingly recognized. Their outcomes vary from benign to severe disability. In this paper, we wished to retrospectively review the clinical, genetic, EEG, neuroimaging, and outcome data of patients experiencing the onset of epilepsy in the first three years of life, diagnosed and followed up in four Italian epilepsy centres (Epilepsy Centre of San Paolo University Hospital in Milan, Child Neurology and Psychiatry Unit of AUSL-IRCCS di Reggio Emilia, Pediatric Neurology Unit of Vittore Buzzi Children's Hospital, Milan, and Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia). We included 168 patients (104 with monogenic conditions, 45 with copy number variations (CNVs) or chromosomal abnormalities, and 19 with variants of unknown significance), who had been followed up for a mean of 14.75 years. We found a high occurrence of generalized seizures at onset, drug resistance, abnormal neurological examination, global developmental delay and intellectual disability, and behavioural and psychiatric comorbidities. We also documented differing presentations between monogenic issues versus CNVs and chromosomal conditions, as well as atypical/rare phenotypes. Genetic early-childhood-onset epilepsies and DEE show a very wide phenotypic and genotypic spectrum, with a high risk of complex neurological and neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Benedetta Cavirani
- Child Neuropsychiatry Unit, Azienda USL di Parma, 43121 Parma, Italy;
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy (L.G.)
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Carlo Alberto Cesaroni
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Gianni Cutillo
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
| | - Valentina De Giorgis
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Child Neurology and Psychiatriy, IRCCS Mondino Foundation, ERN-Epicare, 27100 Pavia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Giulia Bruna Marchetti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Silvia Masnada
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
| | - Angela Peron
- Medical Genetics, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50121 Florence, Italy
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Costanza Varesio
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Child Neurology and Psychiatriy, IRCCS Mondino Foundation, ERN-Epicare, 27100 Pavia, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children’s Hospital, University of Milan, 20157 Milan, Italy;
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit-Epilepsy Center, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy; (A.V.); (M.P.C.)
- Department of Health Sciences, University of Milan, 20157 Milan, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit-Epilepsy Center, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy; (A.V.); (M.P.C.)
- Department of Health Sciences, University of Milan, 20157 Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy (L.G.)
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| |
Collapse
|
5
|
Burk KC, Kaneko M, Quindipan C, Vu MH, Cepin MF, Santoro JD, Van Hirtum-Das M, Holder D, Raca G. Diagnostic Yield of Epilepsy-Genes Sequencing and Chromosomal Microarray in Pediatric Epilepsy. Pediatr Neurol 2024; 150:50-56. [PMID: 37979304 DOI: 10.1016/j.pediatrneurol.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Around 40% of individuals with epilepsy have an underlying identifiable genetic etiology. Common methods for epilepsy genetic testing are chromosomal microarray (CMA) and epilepsy-genes sequencing (EGS). Historically, CMA was the first-line test for patients with epilepsy, but recent studies have shown that EGS has a superior diagnostic yield. To further optimize testing algorithms for epilepsy, we compared these tests' diagnostic yields and explored how they are influenced by age of onset and phenotype complexity. METHODS Genetic test results from a cohort of patients with epilepsy were used to determine the diagnostic yield of CMA (n = 366) versus EGS (n = 370) for genetic epilepsy etiologies. Further analysis examined the probability of diagnostic results based on age of seizure onset and patients' phenotype complexity. RESULTS For patients who underwent CMA, causative variants were found in 28 of 366 cases (7.7%), and 60 of 366 patients (16.4%) had at least one variant of uncertain significance (VUS). For EGS, 65 of 370 (17.6%) cases had causative variants, whereas 155 of 370 (41.9%) had at least one VUS. EGS had a significantly higher diagnostic yield than CMA (odds ratio [OR] = 2.63, P < 0.001). This difference in diagnostic yield was further pronounced among patients with infantile seizure onset (OR = 4.69, P < 0.001) and patients with additional neurological findings (OR = 2.99, P < 0.001). CONCLUSION To minimize the time and resources required to reach a diagnosis, clinicians and insurers alike should consider using EGS as an initial diagnostic tool.
Collapse
Affiliation(s)
- Kelly C Burk
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Maki Kaneko
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Center for Personalized Medicine, Los Angeles, California
| | - Catherine Quindipan
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Center for Personalized Medicine, Los Angeles, California
| | - My H Vu
- Biostatistics Core, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Maritza Feliz Cepin
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles
| | - Jonathan D Santoro
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California; Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles
| | - Michele Van Hirtum-Das
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California; Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles
| | - Deborah Holder
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California; Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Center for Personalized Medicine, Los Angeles, California.
| |
Collapse
|
6
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
7
|
Brock DC, Abbott M, Reed L, Kammeyer R, Gibbons M, Angione K, Bernard TJ, Gaskell A, Demarest S. Epilepsy panels in clinical practice: Yield, variants of uncertain significance, and treatment implications. Epilepsy Res 2023; 193:107167. [PMID: 37230012 DOI: 10.1016/j.eplepsyres.2023.107167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE There has been increasing utilization of genetic testing for pediatric epilepsy in recent years. Little systematic data is available examining how practice changes have impacted testing yields, diagnostic pace, incidence of variants of uncertain significance (VUSs), or therapeutic management. METHODS A retrospective chart review was performed at Children's Hospital Colorado from February 2016 through February 2020. All patients under 18 years for whom an epilepsy gene panel was sent were included. RESULTS A total of 761 epilepsy gene panels were sent over the study period. During the study period, there was a 292% increase in the average number of panels sent per month. The time from seizure onset to panel result decreased over the study period from a median of 2.9 years to 0.7 years. Despite the increase in testing, the percentage of panels yielding a disease-causing result remained stable at 11-13%. A total of 90 disease-causing results were identified, > 75% of which provided guidance in management. Children were more likely to have a disease-causing result if they were < 3 years old at seizure onset (OR 4.4, p < 0.001), had neurodevelopmental concerns (OR 2.2, p = 0.002), or had a developmentally abnormal MRI (OR 3.8, p < 0.001). A total of 1417 VUSs were identified, equating to 15.7 VUSs per disease-causing result. Non-Hispanic white patients had a lower average number of VUSs than patients of all other races/ethnicities (1.7 vs 2.1, p < 0.001). SIGNIFICANCE Expansion in the volume of genetic testing corresponded to a decrease in the time from seizure onset to testing result. Diagnostic yield remained stable, resulting in an increase in the absolute number of disease-causing results annually-most of which have implications for management. However, there has also been an increase in total VUSs, which likely resulted in additional clinical time spent on VUS resolution.
Collapse
Affiliation(s)
- Dylan C Brock
- Children's Hospital Colorado Anschutz Medical Campus, Aurora 13123 East 16th Avenue, Aurora, CO 80045; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Megan Abbott
- Children's Hospital Colorado Anschutz Medical Campus, Aurora 13123 East 16th Avenue, Aurora, CO 80045; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Laurel Reed
- Children's Hospital Colorado Anschutz Medical Campus, Aurora 13123 East 16th Avenue, Aurora, CO 80045; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Ryan Kammeyer
- Children's Hospital Colorado Anschutz Medical Campus, Aurora 13123 East 16th Avenue, Aurora, CO 80045; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Melissa Gibbons
- Children's Hospital Colorado Anschutz Medical Campus, Aurora 13123 East 16th Avenue, Aurora, CO 80045; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Katie Angione
- Precision Medicine Institute, Children's Hospital Colorado Anschutz Medical Campus, Aurora 1312 East 16th Avenue, Aurora, CO 80045, USA; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Timothy J Bernard
- Children's Hospital Colorado Anschutz Medical Campus, Aurora 13123 East 16th Avenue, Aurora, CO 80045; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Alisa Gaskell
- Precision Medicine Institute, Children's Hospital Colorado Anschutz Medical Campus, Aurora 1312 East 16th Avenue, Aurora, CO 80045, USA; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| | - Scott Demarest
- Precision Medicine Institute, Children's Hospital Colorado Anschutz Medical Campus, Aurora 1312 East 16th Avenue, Aurora, CO 80045, USA; University of Colorado, Anschutz Medical Campus School of Medicine, Department of Pediatrics, Section of Neurology Anschutz Medical Campus, Aurora 13001 E 17th Pl, Aurora, CO 80045.
| |
Collapse
|
8
|
High Performance of a Dominant/X-Linked Gene Panel in Patients with Neurodevelopmental Disorders. Genes (Basel) 2023; 14:genes14030708. [PMID: 36980980 PMCID: PMC10048137 DOI: 10.3390/genes14030708] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 2–5% of the population and approximately 50% of cases are due to genetic factors. Since de novo pathogenic variants account for the majority of cases, a gene panel including 460 dominant and X-linked genes was designed and applied to 398 patients affected by intellectual disability (ID)/global developmental delay (GDD) and/or autism (ASD). Pathogenic variants were identified in 83 different genes showing the high genetic heterogeneity of NDDs. A molecular diagnosis was established in 28.6% of patients after high-depth sequencing and stringent variant filtering. Compared to other available gene panel solutions for NDD molecular diagnosis, our panel has a higher diagnostic yield for both ID/GDD and ASD. As reported previously, a significantly higher diagnostic yield was observed: (i) in patients affected by ID/GDD compared to those affected only by ASD, and (ii) in females despite the higher proportion of males among our patients. No differences in diagnostic rates were found between patients affected by different levels of ID severity. Interestingly, patients harboring pathogenic variants presented different phenotypic features, suggesting that deep phenotypic profiling may help in predicting the presence of a pathogenic variant. Despite the high performance of our panel, whole exome-sequencing (WES) approaches may represent a more robust solution. For this reason, we propose the list of genes included in our customized gene panel and the variant filtering procedure presented here as a first-tier approach for the molecular diagnosis of NDDs in WES studies.
Collapse
|
9
|
Schuster J, Klar J, Khalfallah A, Laan L, Hoeber J, Fatima A, Sequeira VM, Jin Z, Korol SV, Huss M, Nordgren A, Anderlid BM, Gallant C, Birnir B, Dahl N. ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function. Front Mol Neurosci 2022; 15:988993. [PMID: 36353360 PMCID: PMC9637781 DOI: 10.3389/fnmol.2022.988993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ayda Khalfallah
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Velin Marita Sequeira
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sergiy V. Korol
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mikael Huss
- Wallenberg Long-Term Bioinformatics Support, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Gallant
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
10
|
Marafi D, Fatih JM, Kaiyrzhanov R, Ferla MP, Gijavanekar C, Al-Maraghi A, Liu N, Sites E, Alsaif HS, Al-Owain M, Zakkariah M, El-Anany E, Guliyeva U, Guliyeva S, Gaba C, Haseeb A, Alhashem AM, Danish E, Karageorgou V, Beetz C, Subhi AA, Mullegama SV, Torti E, Sebastin M, Breilyn MS, Duberstein S, Abdel-Hamid MS, Mitani T, Du H, Rosenfeld JA, Jhangiani SN, Coban Akdemir Z, Gibbs RA, Taylor JC, Fakhro KA, Hunter JV, Pehlivan D, Zaki MS, Gleeson JG, Maroofian R, Houlden H, Posey JE, Sutton VR, Alkuraya FS, Elsea SH, Lupski JR. Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain 2022; 145:909-924. [PMID: 34605855 PMCID: PMC9050560 DOI: 10.1093/brain/awab369] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Correspondence to: Dana Marafi, MD, MSc Department of Pediatrics, Faculty of Medicine, Kuwait University P.O. Box 24923, 13110 Safat, Kuwait E-mail:
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Matteo P Ferla
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Emily Sites
- Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University 11533, Riyadh, Saudi Arabia
| | - Mohamed Zakkariah
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | - Ehab El-Anany
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | | | | | - Colette Gaba
- Department of Pediatrics, Bon Secours Mercy Health, Toledo, OH 43608, USA
| | - Ateeq Haseeb
- Mercy Children’s Hospital, Toledo, OH 43608, USA
| | - Amal M Alhashem
- Division of Medical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Enam Danish
- Department of Ophthalmology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | | | - Alaa A Subhi
- Neurosciences Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | | | | | - Monisha Sebastin
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Division of Genetics, Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, 10467, USA
| | - Margo Sheck Breilyn
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan Duberstein
- Isabelle Rapin Division of Child Neurology in the Saul R Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Jill V Hunter
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, CA 92123, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence may also be addressed to: James R. Lupski, MD, PhD, DSc (hon) Department of Molecular and Human Genetics, Baylor College of Medicine One Baylor Plaza, Room 604B, Houston, TX 77030, USA E-mail:
| |
Collapse
|
11
|
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022; 43:392-405. [PMID: 35427475 PMCID: PMC9119009 DOI: 10.1016/j.tips.2022.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes. These channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard to treat. Here, we review the genetic links to epilepsy, the opportunities and challenges of iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, the available tools for effective phenotyping of iPSC-derived neurons, and discuss the potential therapeutic approaches for these devastating diseases.
Collapse
Affiliation(s)
- Dina Simkin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jordyn Eisenberg
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mennat Gharib
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Hieu NLT, Thu NTM, Ngan LTA, Van LTK, Huy DP, Linh PTT, Mai NTQ, Hien HTD, Hang DTT. Genetic analysis using targeted exome sequencing of 53 Vietnamese children with developmental and epileptic encephalopathies. Am J Med Genet A 2022; 188:2048-2060. [PMID: 35365919 DOI: 10.1002/ajmg.a.62741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refers to a group of rare and severe neurodevelopmental disorders where genetic etiologies can play a major role. This study aimed to elucidate the genetic etiologies of a cohort of 53 Vietnamese patients with DEE. All patients were classified into known electroclinical syndromes where possible. Exome sequencing (ES) followed by a targeted analysis on 294 DEE-related genes was then performed. Patients with identified causative variants were followed for 6 months to determine the impact of genetic testing on their treatment. The diagnostic yield was 38.0% (20/53), which was significantly higher in the earlier onset group (<12 months) than in the later onset group (≥12 months). The 19 identified variants belonged to 11 genes with various cellular functions. Genes encoding ion channels especially sodium voltage-gated channel were the most frequently involved. Most variants were missense variants and located in key protein functional domains. Four variants were novel and four had been reported previously but in different phenotypes. Within 6 months of further follow-up, treatment changes were applied for six patients based on the identified disease-causing variants, with five patients showing a positive impact. This is the first study in Vietnam to analyze the genetics of DEE. This study confirms the strong involvement of genetic etiologies in DEE, especially early onset DEE. The study also contributes to clarify the genotype-phenotype correlations of DEE and highlights the efficacy of targeted ES in the diagnosis and treatment of DEE.
Collapse
Affiliation(s)
- Nguyen Le Trung Hieu
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Le Tran Anh Ngan
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Le Thi Khanh Van
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Do Phuoc Huy
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Pham Thi Truc Linh
- Functional Genomic Unit, DNA Medical Technology Company, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Quynh Mai
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Huynh Thi Dieu Hien
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Do Thi Thu Hang
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Zou D, Wang L, Liao J, Xiao H, Duan J, Zhang T, Li J, Yin Z, Zhou J, Yan H, Huang Y, Zhan N, Yang Y, Ye J, Chen F, Zhu S, Wen F, Guo J. Genome sequencing of 320 Chinese children with epilepsy: a clinical and molecular study. Brain 2021; 144:3623-3634. [PMID: 34145886 PMCID: PMC8719847 DOI: 10.1093/brain/awab233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to evaluate the diagnostic value of genome sequencing in children with epilepsy, and to provide genome sequencing-based insights into the molecular genetic mechanisms of epilepsy to help establish accurate diagnoses, design appropriate treatments and assist in genetic counselling. We performed genome sequencing on 320 Chinese children with epilepsy, and interpreted single-nucleotide variants and copy number variants of all samples. The complete pedigree and clinical data of the probands were established and followed up. The clinical phenotypes, treatments, prognoses and genotypes of the patients were analysed. Age at seizure onset ranged from 1 day to 17 years, with a median of 4.3 years. Pathogenic/likely pathogenic variants were found in 117 of the 320 children (36.6%), of whom 93 (29.1%) had single-nucleotide variants, 22 (6.9%) had copy number variants and two had both single-nucleotide variants and copy number variants. Single-nucleotide variants were most frequently found in SCN1A (10/95, 10.5%), which is associated with Dravet syndrome, followed by PRRT2 (8/95, 8.4%), which is associated with benign familial infantile epilepsy, and TSC2 (7/95, 7.4%), which is associated with tuberous sclerosis. Among the copy number variants, there were three with a length <25 kilobases. The most common recurrent copy number variants were 17p13.3 deletions (5/24, 20.8%), 16p11.2 deletions (4/24, 16.7%), and 7q11.23 duplications (2/24, 8.3%), which are associated with epilepsy, developmental retardation and congenital abnormalities. Four particular 16p11.2 deletions and two 15q11.2 deletions were considered to be susceptibility factors contributing to neurodevelopmental disorders associated with epilepsy. The diagnostic yield was 75.0% in patients with seizure onset during the first postnatal month, and gradually decreased in patients with seizure onset at a later age. Forty-two patients (13.1%) were found to be specifically treatable for the underlying genetic cause identified by genome sequencing. Three of them received corresponding targeted therapies and demonstrated favourable prognoses. Genome sequencing provides complete genetic diagnosis, thus enabling individualized treatment and genetic counselling for the parents of the patients. Genome sequencing is expected to become the first choice of methods for genetic testing of patients with epilepsy.
Collapse
Affiliation(s)
- Dongfang Zou
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | - Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | | | | | - Jing Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | - Ying Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jingyu Ye
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Correspondence may also be addressed to: Feiqiu Wen Shenzhen Children’s Hospital No. 7019 Yitian Road, Shenzhen 518038 Guangdong, China E-mail:
| | - Jian Guo
- BGI-Shenzhen, Shenzhen 518083, China
- Correspondence to: Jian Guo BGI-Shenzhen, Beishan Industry Zone Shenzhen 518083, Guangdong, China E-mail:
| |
Collapse
|
14
|
Sparber P, Mikhaylova S, Galkina V, Itkis Y, Skoblov M. Case Report: Functional Investigation of an Undescribed Missense Variant Affecting Splicing in a Patient With Dravet Syndrome. Front Neurol 2021; 12:761892. [PMID: 34938262 PMCID: PMC8686832 DOI: 10.3389/fneur.2021.761892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Pathogenic variants in the SCN1A gene are associated with a spectrum of epileptic disorders ranging in severity from familial febrile seizures to Dravet syndrome. Large proportions of reported pathogenic variants in SCN1A are annotated as missense variants and are often classified as variants of uncertain significance when no functional data are available. Although loss-of-function variants are associated with a more severe phenotype in SCN1A, the molecular mechanism of single nucleotide variants is often not clear, and genotype-phenotype correlations in SCN1A-related epilepsy remain uncertain. Coding variants can affect splicing by creating novel cryptic splicing sites in exons or by disrupting exonic cis-regulation elements crucial for proper pre-mRNA splicing. Here, we report a novel case of Dravet syndrome caused by an undescribed missense variant, c.4852G>A (p.(Gly1618Ser)). By midigene splicing assay, we demonstrated that the identified variant is in fact splice-affecting. To our knowledge, this is the first report on the functional investigation of a missense variant affecting splicing in Dravet syndrome.
Collapse
Affiliation(s)
- Peter Sparber
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Mikhaylova
- Medical Genetics Department, Russian Children's Clinical Hospital, Moscow, Russia
| | - Varvara Galkina
- Clinical Department, Research Centre for Medical Genetics, Moscow, Russia
| | - Yulia Itkis
- Laboratory of Inherited Metabolic Disorders, Research Centre for Medical Genetics, Moscow, Russia
| | - Mikhail Skoblov
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
15
|
Cardenal-Muñoz E, Auvin S, Villanueva V, Cross JH, Zuberi SM, Lagae L, Aibar JÁ. Guidance on Dravet syndrome from infant to adult care: Road map for treatment planning in Europe. Epilepsia Open 2021; 7:11-26. [PMID: 34882995 PMCID: PMC8886070 DOI: 10.1002/epi4.12569] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Dravet syndrome (DS) is a severe, rare, and complex developmental and epileptic encephalopathy affecting 1 in 16 000 live births and characterized by a drug‐resistant epilepsy, cognitive, psychomotor, and language impairment, and behavioral disorders. Evidence suggests that optimal treatment of seizures in DS may improve outcomes, even though neurodevelopmental impairments are the likely result of both the underlying genetic variant and the epilepsy. We present an updated guideline for DS diagnosis and treatment, taking into consideration care of the adult patient and nonpharmaceutical therapeutic options for this disease. This up‐to‐date guideline, which is based on an extensive review of the literature and culminates with a new treatment algorithm for DS, is a European consensus developed through a survey involving 29 European clinical experts in DS. This guideline will serve professionals in their clinical practice and, as a consequence, will benefit DS patients and their families.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Dravet Syndrome Foundation Spain, Member of the EpiCARE ePAG Group, Madrid, Spain
| | - Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France.,INSERM NeuroDiderot, Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Member of the ERN EpiCARE, Valencia, Spain
| | - J Helen Cross
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK.,Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Lieven Lagae
- Department of Development and Regeneration, KU Leuven, Member of the ERN EpiCARE, Leuven, Belgium
| | - José Ángel Aibar
- Dravet Syndrome Foundation Spain, Member of the EpiCARE ePAG Group, Madrid, Spain
| |
Collapse
|
16
|
Quaio CRDC, Obando MJR, Perazzio SF, Dutra AP, Chung CH, Moreira CM, Novo Filho GM, Sacramento-Bobotis PR, Penna MG, Souza RRFD, Cintra VP, Carnavalli JEP, Silva RAD, Santos MNP, Paixão D, Baratela WADR, Olivati C, Spolador GM, Pintao MC, Fornari ARDS, Burger M, Ramalho RF, Pereira OJE, Ferreira ENE, Mitne-Neto M, Kim CA. Exome sequencing and targeted gene panels: a simulated comparison of diagnostic yield using data from 158 patients with rare diseases. Genet Mol Biol 2021; 44:20210061. [PMID: 34609444 PMCID: PMC8485181 DOI: 10.1590/1678-4685-gmb-2021-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Next-generation sequencing (NGS) has altered clinical genetic testing by widening the access to molecular diagnosis of genetically determined rare diseases. However, physicians may face difficulties selecting the best diagnostic approach. Our goal is to estimate the rate of possible molecular diagnoses missed by different targeted gene panels using data from a cohort of patients with rare genetic diseases diagnosed with exome sequencing (ES). For this purpose, we simulated a comparison between different targeted gene panels and ES: the list of genes harboring clinically relevant variants from 158 patients was used to estimate the theoretical rate of diagnoses missed by NGS panels from 53 different NGS panels from eight different laboratories. Panels presented a mean rate of missed diagnoses of 64% (range 14%-100%) compared to ES, representing an average predicted sensitivity of 36%. Metabolic abnormalities represented the group with highest mean of missed diagnoses (86%), while seizure represented the group with lowest mean (46%). Focused gene panels are restricted in covering select sets of genes implicated in specific diseases and they may miss molecular diagnoses of rare diseases compared to ES. However, their role in genetic diagnosis remains important especially for well-known genetic diseases with established genetic locus heterogeneity.
Collapse
Affiliation(s)
- Caio Robledo D'Angioli Costa Quaio
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas (HCFMUSP), Instituto da Criança, São Paulo, SP, Brazil.,Fleury Medicina e Saúde, São Paulo, SP, Brazil.,Hospital Israelita Albert Einstein, Laboratório Clínico, São Paulo, SP, Brazil
| | - María José Rivadeneira Obando
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas (HCFMUSP), Instituto da Criança, São Paulo, SP, Brazil
| | - Sandro Felix Perazzio
- Fleury Medicina e Saúde, São Paulo, SP, Brazil.,Universidade Federal de São Paulo, Divisão de Reumatologia, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | - Rafael Alves da Silva
- Fleury Medicina e Saúde, São Paulo, SP, Brazil.,Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratório de Hepatologia Molecular Aplicada (LHeMA), São Paulo, SP, Brazil
| | | | | | | | | | - Gustavo Marquezani Spolador
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas (HCFMUSP), Instituto da Criança, São Paulo, SP, Brazil.,Fleury Medicina e Saúde, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | - Chong Ae Kim
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas (HCFMUSP), Instituto da Criança, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Abstract
With the advent of next generation sequencing technology there has been a spurt of papers on genetics in epilepsy in children. Genetic testing has now become an essential part of clinical practice in epilepsy. It helps in reaching an etiological diagnosis, providing prognostic information, guiding therapy precisely indicated for the patient and avoiding drugs that may worsen the seizures. Once the pathogenic variant has been found, this enables determining and counseling the risk of recurrence to the patient and other relatives at risk. It also makes available different reproductive options such as prenatal diagnosis or pre-implantation diagnosis. The authors describe the benefits, the clinical situations that require genetic testing, the types of genetic tests that are available, and how to choose the appropriate test and their likely yields. Genetic counseling, both pre- and post-test that should be provided is described briefly. Two useful tables are included that depict the therapy for variants in different epilepsy genes.
Collapse
|
18
|
Abstract
Despite the increased diagnostic yield associated with genomic sequencing (GS), a sizable proportion of patients do not receive a genetic diagnosis at the time of the initial GS analysis. Systematic data reanalysis leads to considerable increases in genetic diagnosis rates yet is time intensive and leads to questions of feasibility. Few policies address whether laboratories have a duty to reanalyse and it is unclear how this impacts clinical practice. To address this, we interviewed 31 genetic health professionals (GHPs) across Europe, Australia and Canada about their experiences with data reanalysis and variant reinterpretation practices after requesting GS for their patients. GHPs described a range of processes required to initiate reanalysis of GS data for their patients and often practices involved a combination of reanalysis initiation methods. The most common mechanism for reanalysis was a patient-initiated model, where they instruct patients to return to the genetic service for clinical reassessment after a period of time or if new information comes to light. Yet several GHPs expressed concerns about patients' inabilities to understand the need to return to trigger reanalysis, or advocate for themselves, which may exacerbate health inequities. Regardless of the reanalysis initiation model that a genetic service adopts, patients' and clinicians' roles and responsibilities need to be clearly outlined so patients do not miss the opportunity to receive ongoing information about their genetic diagnosis. This requires consensus on the delineation of these roles for clinicians and laboratories to ensure clear pathways for reanalysis and reinterpretation to be performed to improve patient care.
Collapse
|
19
|
Yang M, Xu B, Wang J, Zhang Z, Xie H, Wang H, Hu T, Liu S. Genetic diagnoses in pediatric patients with epilepsy and comorbid intellectual disability. Epilepsy Res 2021; 170:106552. [PMID: 33486335 DOI: 10.1016/j.eplepsyres.2021.106552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE The aim of this retrospective study is to investigate the genetic etiology and propose a diagnostic strategy for pediatric patients with epilepsy and comorbid intellectual disability (ID). METHODS From September 2014 to May 2020, a total of 102 pediatric patients diagnosed with epilepsy with co-morbid ID with unknown causes were included in this study. All patients underwent tests of single nucleotide polymorphism (SNP) array for chromosomal abnormalities. Whole exome sequencing (WES) was consecutively performed in patients without diagnostic copy number variants (CNVs) (n = 85) for single nucleotide variants (SNVs). Subgroup analyses based on the age of seizure onset and ID severity were done. RESULTS The overall diagnostic yield of genetic aberrations was 33.3 % (34/102), which comprised 50.0 % with diagnostic CNVs and 50.0 % with diagnostic SNVs. The yield nominally increased with ID severity and decreased with age of seizure onset, though this result was not statistically significant. The diagnostic yield of SNVs in patients with seizure onset in the first year of life (25.0 % (11/44)) was significantly higher than those with childhood-onset epilepsy (10.3 % (6/58)) (p = 0.049), however, the diagnostic yield of CNVs in patients with childhood-onset epilepsy (17.2 % (10/58) was higher than the diagnostic yield of SNVs (10.3 % (6/58)). The most frequently syndromic epilepsy detected by SNP array was Angelman syndrome (n=4), including one confirmed with paternal uniparental disomy. Meanwhile, the most frequent SNVs were mutations of MECP2 (n=2) and IQSEC2 (n = 2) in sporadic cases. CONCLUSION Both CMA and WES are advantageous as unbiased approaches for a genetically heterogeneous condition. We proposed an effective diagnostic strategy for pediatric patients with epilepsy. For patients with seizure onset in the first year of life, WES is recommended as the first-tier test. However, for patients with childhood-onset epilepsy, SNP array should be considered for the first-tier test.
Collapse
Affiliation(s)
- Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Bocheng Xu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Jiamin Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Zhu Zhang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Ting Hu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
20
|
Kim SY, Jang SS, Kim H, Hwang H, Choi JE, Chae JH, Kim KJ, Lim BC. Genetic diagnosis of infantile-onset epilepsy in the clinic: Application of whole-exome sequencing following epilepsy gene panel testing. Clin Genet 2021; 99:418-424. [PMID: 33349918 DOI: 10.1111/cge.13903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to evaluate the clinical utility of whole-exome sequencing in a group of infantile-onset epilepsy patients who tested negative for epilepsy using a gene panel test. Whole-exome sequencing was performed on 59 patients who tested negative on customized epilepsy gene panel testing. We identified eight pathogenic or likely pathogenic sequence variants in eight different genes (FARS2, YWHAG, KCNC1, DYRK1A, SMC1A, PIGA, OGT, and FGF12), one pathogenic structural variant (8.6 Mb-sized deletion on chromosome X [140 994 419-149 630 805]), and three putative low-frequency mosaic variants from three different genes (GABBR2, MTOR, and CUX1). Subsequent whole-exome sequencing revealed an additional 8% of diagnostic yield with genetic confirmation of epilepsy in 55.4% (62/112) of our cohort. Three genes (YWHAG, KCNC1, and FGF12) were identified as epilepsy-causing genes after the original gene panel was designed. The others were initially linked with mitochondrial encephalopathy or different neurodevelopmental disorders, although an epilepsy phenotype was listed as one of the clinical features. Application of whole-exome sequencing following epilepsy gene panel testing provided 8% of additional diagnostic yield in an infantile-onset epilepsy cohort. Whole-exome sequencing could provide an opportunity to reanalyze newly recognized epilepsy-linked genes without updating the gene panel design.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea
| | - Se Song Jang
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Berg AT, Gaebler-Spira D, Wilkening G, Zelko F, Knupp K, Dixon-Salazar T, Villas N, Meskis MA, Harwell V, Thompson T, Sims S, Nesbitt G. Nonseizure consequences of Dravet syndrome, KCNQ2-DEE, KCNB1-DEE, Lennox-Gastaut syndrome, ESES: A functional framework. Epilepsy Behav 2020; 111:107287. [PMID: 32759067 DOI: 10.1016/j.yebeh.2020.107287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/28/2022]
Abstract
RATIONALE Developmental epilepsies and encephalopathies (DEEs) are characterized by many severe developmental impairments, which are not well-described. A functional framework could facilitate understanding of their nature and severity and guide the selection instruments to measure improvements in therapeutic trials. METHODS An online survey administered through several parent-organized foundations utilized accepted functional classifications and questionnaires derived from common instruments to determine levels of mobility, fine motor, communication, and feeding functions. Statistical analyses focused on overall levels of function and across-group comparisons adjusted for age. RESULTS From 6/2018 to 2/2020, 252 parents provided information for one or more functional domains. Median age was 7.2 years (interquartile range (IQR): 3.9 to 11.8), and 128 (51%) were females. DEE groups were Dravet syndrome (N = 72), KCNQ2-DEE (N = 80), KCNB1-DEE, (N = 33), Lennox-Gastaut syndrome (LGS; N = 26), electrographic status epilepticus in sleep (ESES; N = 15), and others (N = 26). Overall, functional hand grasp was absent in 48 (20%). Of children ≥2 years old, 60/214 (28%) could not walk independently, 85 (40%) were dependent on someone else for feeding, and 153 (73%) did not effectively communicate with unfamiliar people. Impairments entailing absence or near absence of independent function (profound impairment) were observed in 0, 1, 2, 3, and 4 domains for 58 (25%), 78 (34%), 40 (17%), 33 (14%), and 22 (10%) children, respectively. After adjustment for age, impairment levels varied substantially across DEE group for mobility (p < 0.0001), feeding (p < 0.0001), communication (p < 0.0001), hand grasp (p < 0.0001), and number of profoundly impaired domains (p < 0.0001). Three or four profoundly affected domains were reported in 44% of KCNQ2-DEE participants, followed by LGS (29%), KCNB1-DEE (27%), ESES (7%), and Dravet syndrome (6%). CONCLUSIONS Many children with DEEs experience severe functional impairments, and few children have typical function. As precision therapies will emphasize nonseizures consequences of DEEs, understanding the nature of abilities and impairments will be critical to selecting appropriate outcome measures in therapeutic trials.
Collapse
Affiliation(s)
- Anne T Berg
- Division of Neurology, Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago and Department of Pediatrics, Northwestern Feinberg School of Medicine, United States of America.
| | - Deborah Gaebler-Spira
- Shirley Ryan Ability Laboratory, Chicago, IL and Departments Physical Medicine and Rehabilitation and Pediatrics, Northwestern Feinberg School of Medicine, Chicago, IL, United States of America
| | - Greta Wilkening
- Depts. Pediatrics and Neurology, University of Colorado - Anschutz Campus, Aurora, CO, United States of America
| | - Frank Zelko
- Pritzker Department of Psychiatry and Behavioral Health, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States of America
| | - Kelly Knupp
- Depts. Pediatrics and Neurology, University of Colorado - Anschutz Campus, Aurora, CO, United States of America
| | | | - Nicole Villas
- Dravet Syndrome Foundation, Cherry Hill, NJ, United States of America
| | - Mary Anne Meskis
- Dravet Syndrome Foundation, Cherry Hill, NJ, United States of America
| | - Vinez Harwell
- ESES/CSWS/LKS Group, Williamsburg, VA, United States of America
| | - Tina Thompson
- KCNQ2 parent, West Des Moines, IA, United States of America
| | - Scotty Sims
- KCNQ2 Cure Alliance, Denver, CO, United States of America
| | | |
Collapse
|
22
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
23
|
Lee J, Lee C, Ki CS, Lee J. Determining the best candidates for next-generation sequencing-based gene panel for evaluation of early-onset epilepsy. Mol Genet Genomic Med 2020; 8:e1376. [PMID: 32613771 PMCID: PMC7507365 DOI: 10.1002/mgg3.1376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background Genetic testing is an emerging diagnostic approach in early‐onset epilepsy. Identification of the heterogeneous genetic causes of epilepsy may mitigate unnecessary evaluations and allow more accurate diagnosis and therapy. We aimed to uncover genetic causes of early‐onset epilepsy using next‐generation sequencing (NGS) to elucidate the diagnostic candidates and evaluate the diagnostic yield of targeted gene panel testing. Methods We evaluated 116 patients with early‐onset epilepsy developed before 2 years old and normal brain imaging using a NGS‐based targeted gene panel. Variants were classified according to their pathogenicity, and the diagnostic yield of the targeted genes and associated clinical factors were determined. Results We detected 40 disease‐causing variants with diagnostic yield of 34.5% (19 pathogenic, 21 likely pathogenic). Twelve variants were novel. The most commonly detected genes were SCN1A, associated with Dravet syndrome, and PRRT2, associated with benign familial infantile epilepsy. Other variants were identified in ARX, SCN2A, KCNQ2, PCDH19, STXBP1, DEPDC5, and SCN8A. The age of seizure onset and family history were associated with disease‐causing variants. Conclusion Next‐generation sequencing‐based targeted testing is an effective diagnostic test, with 30%–40% comparable diagnostic yield. Patients with earlier seizure onset and family history of epilepsy were the best candidates for testing. For pediatric patients with early‐onset epilepsy, genetic diagnosis is important for accurate prognosis and treatment.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Scala M, Bianchi A, Bisulli F, Coppola A, Elia M, Trivisano M, Pruna D, Pippucci T, Canafoglia L, Lattanzi S, Franceschetti S, Nobile C, Gambardella A, Michelucci R, Zara F, Striano P. Advances in genetic testing and optimization of clinical management in children and adults with epilepsy. Expert Rev Neurother 2020; 20:251-269. [PMID: 31941393 DOI: 10.1080/14737175.2020.1713101] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Epileptic disorders are a heterogeneous group of medical conditions with epilepsy as the common denominator. Genetic causes, electro-clinical features, and management significantly vary according to the specific condition.Areas covered: Relevant diagnostic advances have been achieved thanks to the advent of Next Generation Sequencing (NGS)-based molecular techniques. These revolutionary tools allow to sequence all coding (whole exome sequencing, WES) and non-coding (whole genome sequencing, WGS) regions of human genome, with a potentially huge impact on patient care and scientific research.Expert opinion: The application of these tests in children and adults with epilepsy has led to the identification of new causative genes, widening the knowledge on the pathophysiology of epilepsy and resulting in therapeutic implications. This review will explore the most recent advancements in genetic testing and provide up-to-date approaches for the choice of the correct test in patients with epilepsy.
Collapse
Affiliation(s)
- Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Amedeo Bianchi
- Division of Neurology, Hospital San Donato Arezzo, Arezzo, Italy
| | - Francesca Bisulli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonietta Coppola
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Maurizio Elia
- Unit of Neurology and Clinical Neurophysiopathology, IRCCS Oasi Research Institute, Troina, Italy
| | - Marina Trivisano
- Neurology Unit, Department of Neuroscience, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Dario Pruna
- Epilepsy Unit, A. Cao Hospital, Cagliari, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant' Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | | | - Carlo Nobile
- CNR-Neuroscience Institute and Department of Biomedical Sciences (C.N.), University of Padua, Padua, Italy
| | - Antonio Gambardella
- Dipartimento Di Scienze Mediche E Chirurgiche, Università Della Magna Graecia, Catanzaro, Istituto Di Scienze Neurologiche CNR Mangone, Cosenza, Italy
| | - Roberto Michelucci
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|