1
|
Kitano K, O'Hashi K, Fujita S, Kobayashi M. Reduction in calcium responses to whisker stimulation in the primary somatosensory and motor cortices of the model mouse with trigeminal neuropathic pain. J Oral Biosci 2024; 66:587-593. [PMID: 38880250 DOI: 10.1016/j.job.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Chronic constriction injury (CCI) of the infraorbital nerve induces neuropathic pain, such as allodynia and hyperalgesia, in the orofacial area. However, the changes in the local circuits of the central nervous system following CCI remain unclear. This study aimed to identify the changes following CCI in Thy1-GCaMP6s transgenic mice. METHODS Neural activity in the primary somatosensory cortex (S1) and motor cortex (M1) following whisker stimulation was assessed using in vivo Ca2+ imaging. CCI-induced changes in responses were analyzed. RESULTS Before CCI, whisker stimulation induced a greater Ca2+ response in the contralateral S1 than in the ipsilateral S1 and contralateral M1. The peak Ca2+ response amplitude in the bilateral S1 and contralateral M1 decreased two days after CCI compared to before CCI. Decreased Ca2+ response amplitude in these regions was observed until four days after CCI. Seven days after CCI, the Ca2+ response amplitude in the contralateral S1 decreased, whereas that in the ipsilateral S1 and contralateral M1 recovered to control levels. CONCLUSION These results suggest that neural activity in regions receiving excitatory inputs via corticocortical pathways recovers earlier than in regions receiving thalamocortical inputs. (185/250 words).
Collapse
Affiliation(s)
- Kouhei Kitano
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazunori O'Hashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satoshi Fujita
- Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
2
|
Wu J, Yuan T, Fu D, Xu R, Zhang W, Li S, Ding J, Feng L, Xia Y, Wang J, Li W, Han Y. An experimental model for primary neuropathic corneal pain induced by long ciliary nerve ligation in rats. Pain 2024; 165:1391-1403. [PMID: 38227559 DOI: 10.1097/j.pain.0000000000003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/28/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Neuropathic corneal pain (NCP) is a new and ill-defined disease characterized by pain, discomfort, aching, burning sensation, irritation, dryness, and grittiness. However, the mechanism underlying NCP remain unclear. Here, we reported a novel rat model of primary NCP induced by long ciliary nerve (LCN) ligation. After sustained LCN ligation, the rats developed increased corneal mechanical and chemical sensitivity, spontaneous blinking, and photophobia, which were ameliorated by intraperitoneal injection of morphine or gabapentin. However, neither tear reduction nor corneal injury was observed in LCN-ligated rats. Furthermore, after LCN ligation, the rats displayed a significant reduction in corneal nerve density, as well as increased tortuosity and beading nerve ending. Long ciliary nerve ligation also notably elevated corneal responsiveness under resting or menthol-stimulated conditions. At a cellular level, we observed that LCN ligation increased calcitonin gene-related peptide (neuropeptide)-positive cells in the trigeminal ganglion (TG). At a molecular level, upregulated mRNA levels of ion channels Piezo2, TRPM8, and TRPV1, as well as inflammatory factors TNF-α, IL-1β, and IL-6, were also detected in the TG after LCN ligation. Meanwhile, consecutive oral gabapentin attenuated LCN ligation-induced corneal hyperalgesia and increased levels of ion channels and inflammation factors in TG. This study provides a reliable primary NCP model induced by LCN ligation in rats using a simple, minimally invasive surgery technique, which may help shed light on the underlying cellular and molecular bases of NCP and aid in developing a new treatment for the disease.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Tianjie Yuan
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Danyun Fu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Rui Xu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Wenna Zhang
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Shuangshuang Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Jiahui Ding
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Lili Feng
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Ying Xia
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Xuhui District, Shanghai, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| |
Collapse
|
3
|
Kirihara Y, Zama M, Fujita S, Ogisawa S, Nishikubo S, Tonogi M, Kobayashi M. Asymmetrical organization of oral structures in the primary and secondary somatosensory cortices in rats: An optical imaging study. Synapse 2022; 76:e22222. [PMID: 35034380 DOI: 10.1002/syn.22222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
In rodents, the representation of the body surface in the primary somatosensory cortex (S1) forms a mirror image along the ventral border of the S1 in the secondary somatosensory cortex (S2). Sensory information from the oral region is processed in the S1 and the border region between the S2 and insular oral region (IOR). We examined the relationship between somatosensory representations in the S1 and S2/IOR using optical imaging with a voltage-sensitive dye in urethane-anesthetized rats. In reference to the rhinal fissure and middle cerebral artery, we made a somatosensory map by applying electrical or air puff stimulation. The initial neural excitation in the S1 to facial structures, including the eyebrow, cornea, pinna, whisker pad, nasal tip, and nasal mucosa, spread toward the ventral area, putatively the S2. The initial cortical responses in the S1 to oral structures, including the lower lip, tongue, and teeth, were spatially separated from those in the S2/IOR. The representation of the tongue center, tongue tip, mandibular molar pulp, mandibular incisor pulp, and mandibular incisor periodontal ligament were almost linearly arranged from caudal to rostral in both S1 and S2/IOR. The lower lip was represented in the dorsal area from the representation of teeth and tongue in both S1 and S2/IOR. The representations of maxillary teeth were caudal and dorsal to the representations of mandibular teeth in the S1 and S2/IOR, respectively. These results suggest that the representation of oral structures in the S1 formed a non-mirror image, not a mirror image, in the S2/IOR. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuki Kirihara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Manabu Zama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Satoshi Fujita
- Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Shouhei Ogisawa
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Shuichi Nishikubo
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Hyogo, 650-0047, Japan
| |
Collapse
|
4
|
Shinoda M, Imamura Y, Hayashi Y, Noma N, Okada-Ogawa A, Hitomi S, Iwata K. Orofacial Neuropathic Pain-Basic Research and Their Clinical Relevancies. Front Mol Neurosci 2021; 14:691396. [PMID: 34295221 PMCID: PMC8291146 DOI: 10.3389/fnmol.2021.691396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Trigeminal nerve injury is known to cause severe persistent pain in the orofacial region. This pain is difficult to diagnose and treat. Recently, many animal studies have reported that rewiring of the peripheral and central nervous systems, non-neuronal cell activation, and up- and down-regulation of various molecules in non-neuronal cells are involved in the development of this pain following trigeminal nerve injury. However, there are many unknown mechanisms underlying the persistent orofacial pain associated with trigeminal nerve injury. In this review, we address recent animal data regarding the involvement of various molecules in the communication of neuronal and non-neuronal cells and examine the possible involvement of ascending pathways in processing pathological orofacial pain. We also address the clinical observations of persistent orofacial pain associated with trigeminal nerve injury and clinical approaches to their diagnosis and treatment.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
5
|
Sałat K, Furgała-Wojas A, Sałat R. The Microglial Activation Inhibitor Minocycline, Used Alone and in Combination with Duloxetine, Attenuates Pain Caused by Oxaliplatin in Mice. Molecules 2021; 26:molecules26123577. [PMID: 34208184 PMCID: PMC8230860 DOI: 10.3390/molecules26123577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
The antitumor drug, oxaliplatin, induces neuropathic pain, which is resistant to available analgesics, and novel mechanism-based therapies are being evaluated for this debilitating condition. Since activated microglia, impaired serotonergic and noradrenergic neurotransmission and overexpressed sodium channels are implicated in oxaliplatin-induced pain, this in vivo study assessed the effect of minocycline, a microglial activation inhibitor used alone or in combination with ambroxol, a sodium channel blocker, or duloxetine, a serotonin and noradrenaline reuptake inhibitor, on oxaliplatin-induced tactile allodynia and cold hyperalgesia. To induce neuropathic pain, a single dose (10 mg/kg) of intraperitoneal oxaliplatin was used. The mechanical and cold pain thresholds were assessed using mouse von Frey and cold plate tests, respectively. On the day of oxaliplatin administration, only duloxetine (30 mg/kg) and minocycline (100 mg/kg) used alone attenuated both tactile allodynia and cold hyperalgesia 1 h and 6 h after administration. Minocycline (50 mg/kg), duloxetine (10 mg/kg) and combined minocycline + duloxetine influenced only tactile allodynia. Seven days after oxaliplatin, tactile allodynia (but not cold hyperalgesia) was attenuated by minocycline (100 mg/kg), duloxetine (30 mg/kg) and combined minocycline and duloxetine. These results indicate a potential usefulness of minocycline used alone or combination with duloxetine in the treatment of oxaliplatin-induced pain.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
- Correspondence: ; Tel./Fax: +48-12-62-05-554
| | - Anna Furgała-Wojas
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Robert Sałat
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| |
Collapse
|
6
|
Presynaptic NK1 Receptor Activation by Substance P Suppresses EPSCs via Nitric Oxide Synthesis in the Rat Insular Cortex. Neuroscience 2021; 455:151-164. [DOI: 10.1016/j.neuroscience.2020.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/28/2023]
|
7
|
Oxytocin-Dependent Regulation of TRPs Expression in Trigeminal Ganglion Neurons Attenuates Orofacial Neuropathic Pain Following Infraorbital Nerve Injury in Rats. Int J Mol Sci 2020; 21:ijms21239173. [PMID: 33271955 PMCID: PMC7731199 DOI: 10.3390/ijms21239173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
We evaluated the mechanisms underlying the oxytocin (OXT)-induced analgesic effect on orofacial neuropathic pain following infraorbital nerve injury (IONI). IONI was established through tight ligation of one-third of the infraorbital nerve thickness. Subsequently, the head withdrawal threshold for mechanical stimulation (MHWT) of the whisker pad skin was measured using a von Frey filament. Trigeminal ganglion (TG) neurons innervating the whisker pad skin were identified using a retrograde labeling technique. OXT receptor-immunoreactive (IR), transient receptor potential vanilloid 1 (TRPV1)-IR, and TRPV4-IR TG neurons innervating the whisker pad skin were examined on post-IONI day 5. The MHWT remarkably decreased from post-IONI day 1 onward. OXT application to the nerve-injured site attenuated the decrease in MHWT from day 5 onward. TRPV1 or TRPV4 antagonism significantly suppressed the decrement of MHWT following IONI. OXT receptors were expressed in the uninjured and Fluoro-Gold (FG)-labeled TG neurons. Furthermore, there was an increase in the number of FG-labeled TRPV1-IR and TRPV4-IR TG neurons, which was inhibited by administering OXT. This inhibition was suppressed by co-administration with an OXT receptor antagonist. These findings suggest that OXT application inhibits the increase in TRPV1-IR and TRPV4-IR TG neurons innervating the whisker pad skin, which attenuates post-IONI orofacial mechanical allodynia.
Collapse
|
8
|
Application of oxytocin with low-level laser irradiation suppresses the facilitation of cortical excitability by partial ligation of the infraorbital nerve in rats: An optical imaging study. Brain Res 2019; 1728:146588. [PMID: 31811836 DOI: 10.1016/j.brainres.2019.146588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022]
Abstract
The effects of current treatments for neuropathic pain are limited. Oxytocin is a novel candidate substance to relieve neuropathic pain, as demonstrated in various animal models with nerve injury. Low-level laser therapy (LLLT) is another option for the treatment of neuropathic pain. In this study, we quantified the effects of oxytocin or LLLT alone and the combination of oxytocin and LLLT on cortical excitation induced by electrical stimulation of the dental pulp using optical imaging with a voltage-sensitive dye in the neuropathic pain model with partial ligation of the infraorbital nerve (pl-ION). We applied oxytocin (OXT, 0.5 μmol) to the rat once on the day of pl-ION locally to the injured nerve. LLLT using a diode laser (810 nm, 0.1 W, 500 s, continuous mode) was performed daily via the skin to the injured nerve from the day of pl-ION to 2 days after pl-ION. Cortical responses to electrical stimulation of the mandibular molar pulp under urethane anesthesia were recorded 3 days after pl-ION. Both the amplitude and area of excitation in the primary and secondary somatosensory and insular cortices in pl-ION rats were larger than those in sham rats. The larger amplitude of cortical excitation caused by pl-ION was suppressed by OXT or LLLT. The expanded area of cortical excitation caused by pl-ION was suppressed by OXT with LLLT but not by OXT or LLLT alone. These results suggest that the combined application of OXT and LLLT is effective in relieving the neuropathic pain induced by trigeminal nerve injury.
Collapse
|