1
|
Zhao D, Guo J, Lu G, Jiang R, Tian C, Liang X. MRI-based differentiation of Parkinson's disease by cerebellar gray matter volume. SLAS Technol 2025; 31:100260. [PMID: 40023444 DOI: 10.1016/j.slast.2025.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The underlying mechanism of Parkinson's disease (PD) is associated with the neurodegeneration of the dopaminergic neurons, and the cerebellum plays a significant role together in non-motor and motor functions in PD progression. Morphological changes in the cerebellum can greatly impact patients' clinical symptoms, especially motor control symptoms, and may also help distinguish patients from healthy subjects. This study aimed to explore the potential of cerebellar gray matter volume, related to motor control function, as a neuroimaging biomarker to classify patients with PD and healthy controls (HC) by using voxel-based morphometric (VBM) measurements and support vector machine (SVM) methods based on independent component analysis (ICA). METHODS Cerebellar gray matter volume was measured using VBM in patients with PD (n = 27) and HC (n = 16) from the Neurocon dataset. ICA analysis was performed on the gray matter volume of all subregions, resulting in 7 independent components. These independent components were then utilized for correlation analysis with clinical scales and trained as input features for the SVM model. PD patients (n = 20) and HC (n = 20) from the TaoWu dataset were used as test data to validate our SVM model. RESULTS Among patients with PD, 3 out of the 7 independent components showed a significant correlation with clinical scales. The SVM model achieved an accuracy of 86 % in classifying PD patients and HC, with a sensitivity of 72.2 %, specificity of 88 %, and F1 Score of 76.5 %. The accuracy of the SVM model verification analysis using the TaoWu dataset was 70 %, with a sensitivity of 62.5 %, a specificity of 100 %, and the F1 Score was 76.9 %. CONCLUSIONS The results suggest that abnormal cerebellar gray matter volume, which is highly correlated with motor control function in Parkinson's patients, may serve as a valuable neuroimaging biomarker capable of distinguishing Parkinson's patients from healthy individuals. We observed that the combination of the ICA method and the SVM method produced an improved classification model. This model may function as an early warning tool that enables clinicians to conduct preliminary identification and intervention for patients with PD.
Collapse
Affiliation(s)
- Dacong Zhao
- Medical Imaging Center, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou 635000, PR China
| | - Jiang Guo
- Medical Imaging Center, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou 635000, PR China
| | - Guanghua Lu
- Medical Imaging Center, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou 635000, PR China
| | - Rui Jiang
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Chao Tian
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Xu Liang
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Tait P, Graham L, Vitorio R, Watermeyer T, Timm EC, O'Keefe J, Stuart S, Morris R. Neuroimaging and cognitive correlates of postural control in Parkinson's disease: a systematic review. J Neuroeng Rehabil 2025; 22:24. [PMID: 39920722 PMCID: PMC11806873 DOI: 10.1186/s12984-024-01539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025] Open
Abstract
Parkinson's disease (PD) can cause postural instability, which may result in falls. These issues have been associated with motor and non-motor symptoms (NMS), including cognitive dysfunction. Several techniques have been employed to investigate the underlying neural mechanisms involved in postural control in PD. These include behavioural studies assessing associations between cognition and postural control, functional neuroimaging studies, and resting-state neural correlates. This review provides an overview of these emerging bodies of research. Scopus, PubMed, and ProQuest were searched and detailed the brain-imaging technique, cohort, and postural control measures. A total of 79 studies were identified. Findings supported the notion of cortical involvement in postural control function to compensate for subcortical damage resulting from PD. Future studies should standardise their outcome measures and data analysis to allow comparisons of results across studies and ensure more comprehensive and robust data collection to enhance the reliability and validity of these findings.
Collapse
Affiliation(s)
- Patrick Tait
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
| | - Lisa Graham
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
- Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Rodrigo Vitorio
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Tamlyn Watermeyer
- Department of Psychology, Northumbria University, Newcastle Upon Tyne, UK
| | - Emily C Timm
- Department of Anatomy & Cell Biology, RUSH University Medical Center, Chicago, IL, USA
| | - Joan O'Keefe
- Department of Anatomy & Cell Biology, RUSH University Medical Center, Chicago, IL, USA
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
- Department of Neurology, Oregon Health & Science University, Oregon, UK
| | - Rosie Morris
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK.
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK.
| |
Collapse
|
3
|
Youssef OM, Lashine NH, El-Nablaway M, El-Yamany MI, Youssef MM, Arida DA. Ferulic acid mitigated rotenone toxicity -Evoked Parkinson in rat model by featuring apoptosis, oxidative stress, and neuroinflammation signaling. Tissue Cell 2024; 91:102614. [PMID: 39577325 DOI: 10.1016/j.tice.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Over time, Parkinson disease (PD) develops as a neurological illness. The goal of this study was to see whether ferulic acid has any neuroprotective benefits on the cerebellum of rats that have Parkinson's disease brought on by rotenone poisoning. A total of twenty-four male albino rats, in good condition, weighed between 200 and 250 g and nine to ten weeks old, were employed in the investigation. The control group received 1 ml of sunflower oil intraperitoneally (i.p.) each day. Rats' motor performance was considerably worse when given rotenone than it was in the control group. Rats given Ferulic Acid (FA) showed a substantial drop in the amount of glutathione (GSH) in the cerebellum. Moreover, the injection of FA resulted in a significant reduction in the optical density (OD) of the immune-positive reaction for α-synuclein, and the area percentage of BCL-2 and NF-kB immunological positive response. FA therapy, surprisingly, enhanced the OD of TH immunopositive response and apoptotic regulators (BCL2) in the cerebellum. Furthermore, FA boosted BCL2 expression, confirming the antiapoptotic effects of FA. Based on these results, FA is probably a good candidate to treat neurodegenerative diseases brought on by long-term exposure to rotenone.
Collapse
Affiliation(s)
- Ola Mohammed Youssef
- Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nermeen Hosney Lashine
- Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Mona Ibrahim El-Yamany
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Damietta University, New Damietta City, Egypt.
| | - Manar Monir Youssef
- Department of Molecular Biology, Faculty of Medicine, Cairo University, Egypt.
| | - Dina Abdalla Arida
- Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Porcu M, Cocco L, Marrosu F, Cau R, Puig J, Suri JS, Saba L. Hippocampus and olfactory impairment in Parkinson disease: a comparative exploratory combined volumetric/functional MRI study. Neuroradiology 2024; 66:1941-1953. [PMID: 39046517 DOI: 10.1007/s00234-024-03436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Patients with Parkinson's Disease (PD) commonly experience Olfactory Dysfunction (OD). Our exploratory study examined hippocampal volumetric and resting-state functional magnetic resonance imaging (rs-fMRI) variations in a Healthy Control (HC) group versus a cognitively normal PD group, further categorized into PD with No/Mild Hyposmia (PD-N/MH) and PD with Severe Hyposmia (PD-SH). METHODS We calculated participants' relative Total Hippocampal Volume (rTHV) and performed Spearman's partial correlations, controlled for age and gender, to examine the correlation between rTHV and olfactory performance assessed by the Odor Stick Identification Test for the Japanese (OSIT-J) score. Mann-Whitney U tests assessed rTHV differences across groups and subgroups, rejecting the null hypothesis for p < 0.05. Furthermore, a seed-based rs-fMRI analysis compared hippocampal connectivity differences using a one-way ANCOVA covariate model with controls for age and gender. RESULTS Spearman's partial correlations indicated a moderate positive correlation between rTHV and OSIT-J in the whole study population (ρ = 0.406; p = 0.007), PD group (ρ = 0.493; p = 0.008), and PD-N/MH subgroup (ρ = 0.617; p = 0.025). Mann-Whitney U tests demonstrated lower rTHV in PD-SH subgroup compared to both HC group (p = 0.013) and PD-N/MH subgroup (p = 0.029). Seed-to-voxel rsfMRI analysis revealed reduced hippocampal connectivity in PD-SH subjects compared to HC subjects with a single cluster of voxels. CONCLUSIONS Although the design of the study do not allow to make firm conclusions, it is reasonable to speculate that the progressive involvement of the hippocampus in PD patients is associated with the progression of OD.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S. 554, km 4.500, CAP 09042, Monserrato (Cagliari), Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Shen B, Yao Q, Li W, Dong S, Zhang H, Zhao Y, Pan Y, Jiang X, Li D, Chen Y, Yan J, Zhang W, Zhu Q, Zhang D, Zhang L, Wu Y. Dynamic cerebellar and sensorimotor network compensation in tremor-dominated Parkinson's disease. Neurobiol Dis 2024; 201:106659. [PMID: 39243826 DOI: 10.1016/j.nbd.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
AIM Parkinson's disease (PD) tremor is associated with dysfunction in the basal ganglia (BG), cerebellum (CB), and sensorimotor networks (SMN). We investigated tremor-related static functional network connectivity (SFNC) and dynamic functional network connectivity (DFNC) in PD patients. METHODS We analyzed the resting-state functional MRI data of 21 tremor-dominant Parkinson's disease (TDPD) patients and 29 healthy controls. We compared DFNC and SFNC between the three networks and assessed their associations with tremor severity. RESULTS TDPD patients exhibited increased SFNC between the SMN and BG networks. In addition, they spent more mean dwell time (MDT) in state 2, characterized by sparse connections, and less MDT in state 4, indicating stronger connections. Furthermore, enhanced DFNC between the CB and SMN was observed in state 2. Notably, the MDT of state 2 was positively associated with tremor scores. CONCLUSION The enhanced dynamic connectivity between the CB and SMN in TDPD patients suggests a potential compensatory mechanism. However, the tendency to remain in a state of sparse connectivity may contribute to the severity of tremor symptoms.
Collapse
Affiliation(s)
- Bo Shen
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China; Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qun Yao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuangshuang Dong
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haiying Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Jiang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongfeng Li
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yaning Chen
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhu
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Daoqiang Zhang
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| |
Collapse
|
6
|
Sarasso E, Gardoni A, Zenere L, Emedoli D, Balestrino R, Grassi A, Basaia S, Tripodi C, Canu E, Malcangi M, Pelosin E, Volontè MA, Corbetta D, Filippi M, Agosta F. Neural correlates of bradykinesia in Parkinson's disease: a kinematic and functional MRI study. NPJ Parkinsons Dis 2024; 10:167. [PMID: 39242570 PMCID: PMC11379907 DOI: 10.1038/s41531-024-00783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Bradykinesia is defined as a "complex" of motor alterations including decreased movement amplitude and/or speed and tendency to reduce them with movement repetition (sequence effect). This study aimed at investigating the neural and kinematic correlates of bradykinesia during hand-tapping in people with Parkinson's disease (pwPD) relative to healthy controls. Twenty-five pwPD and 25 age- and sex-matched healthy controls underwent brain functional MRI (fMRI) during a hand-tapping task: subjects alternatively opened and closed their right hand as fully and quickly as possible. Hand-tapping kinematic parameters were objectively measured during the fMRI task using an optical fibre glove. During the fMRI task, pwPD showed reduced hand-tapping amplitude (hypokinesia) and a greater sequence effect. PwPD relative to healthy controls showed a reduced activity of fronto-parietal areas, middle cingulum/supplementary motor area (SMA), parahippocampus, pallidum/thalamus and motor cerebellar areas. Moreover, pwPD showed an increased activity of brain cognitive areas such as superior temporal gyrus, posterior cingulum, and cerebellum crus I. The decreased activity of cerebellum IV-V-VI, vermis IV-V, inferior frontal gyrus, and cingulum/SMA correlated with hypokinesia and with the sequence effect. Interestingly, a reduced activity of areas involved in motor planning and timing correlated both with hypokinesia and with the sequence effect in pwPD. This study has the major strength of collecting objective motor parameters and brain activity simultaneously, providing a unique opportunity to investigate the neural correlates of the "bradykinesia complex".
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Andrea Gardoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lucia Zenere
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Emedoli
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Balestrino
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Grassi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Tripodi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Malcangi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Davide Corbetta
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Gambosi B, Jamal Sheiban F, Biasizzo M, Antonietti A, D'angelo E, Mazzoni A, Pedrocchi A. A Model with Dopamine Depletion in Basal Ganglia and Cerebellum Predicts Changes in Thalamocortical Beta Oscillations. Int J Neural Syst 2024; 34:2450045. [PMID: 38886870 DOI: 10.1142/s012906572450045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Parkinsonism is presented as a motor syndrome characterized by rigidity, tremors, and bradykinesia, with Parkinson's disease (PD) being the predominant cause. The discovery that those motor symptoms result from the death of dopaminergic cells in the substantia nigra led to focus most of parkinsonism research on the basal ganglia (BG). However, recent findings point to an active involvement of the cerebellum in this motor syndrome. Here, we have developed a multiscale computational model of the rodent brain's BG-cerebellar network. Simulations showed that a direct effect of dopamine depletion on the cerebellum must be taken into account to reproduce the alterations of neural activity in parkinsonism, particularly the increased beta oscillations widely reported in PD patients. Moreover, dopamine depletion indirectly impacted spike-time-dependent plasticity at the parallel fiber-Purkinje cell synapses, degrading associative motor learning as observed in parkinsonism. Overall, these results suggest a relevant involvement of cerebellum in parkinsonism associative motor symptoms.
Collapse
Affiliation(s)
- Benedetta Gambosi
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Francesco Jamal Sheiban
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Marco Biasizzo
- Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Information Engineering (DIE), University of Pisa, Pisa, Italy
| | - Alberto Antonietti
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Egidio D'angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Alberto Mazzoni
- Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| |
Collapse
|
8
|
Ozgen MN, Sahin NE, Ertan N, Sahin B. Investigation of total cerebellar and flocculonodular lobe volume in Parkinson's disease and healthy individuals: a brain segmentation study. Neurol Sci 2024; 45:4291-4298. [PMID: 38622454 PMCID: PMC11306710 DOI: 10.1007/s10072-024-07509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder with an unexplored link to the cerebellum. In the pathophysiology of balance disorders in PD, the role of the flocculonodular lobe (FL) is linked to the impairment of the dopaminergic system. Dopamine deficiency can also lead to changes in cerebellum functions, disrupting balance control. This study compares cerebellar and FL volumes between healthy controls (HC) and PD patients, analyzing their correlation with clinical outcomes. METHODS We used magnetic resonance images of 23 PD patients (14 male, 9 female) and 24 HC (9 male, 15 female). Intracranial (ICV), total cerebellar, FL, and cerebellar gray matter volumes were measured using VolBrain. Clinical outcomes in PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS-III) to evaluate motor function, with scores correlated to volumetric data. RESULTS The cerebellar and gray matter volumes in HC were 115.53 ± 10.44 cm3 and 84.83 ± 7.76 cm3, respectively, compared to 126.83 ± 13.47 cm3 and 92.37 ± 9.45 cm3 in PD patients, indicating significantly larger volumes in PD patients (p < 0.05). The flocculonodular lobe gray matter volume was 1.14 ± 0.19 cm3 in PD patients and 1.02 ± 0.13 cm3 in HC, but there was a significant increase in gray matter volume in PD patients between the groups (p < 0.05). In PD patients, significant negative correlations were observed between FL volume and the UPDRS-III scores (r = - 0.467, p = 0.033) and between UPDRS-III scores and both total (r = - 0.453, p = 0.039) and normalized (r = - 0.468, p = 0.032) gray matter volumes of the FL. CONCLUSION Although total gray matter volumes were larger in PD patients, the volumes of FL did not differ between groups. In Parkinson's disease, increased cerebellar volume may regulate fine motor movements rather than balance.
Collapse
Affiliation(s)
- Merve Nur Ozgen
- Department of Anatomy, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Necati Emre Sahin
- Department of Anatomy, Faculty of Medicine, Karabük University, Karabük, Türkiye
| | - Nurcan Ertan
- Radiology Clinic, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Bunyamin Sahin
- Department of Anatomy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye.
| |
Collapse
|
9
|
Kumari S, Rana B, Senthil Kumaran S, Chaudhary S, Jain S, Srivastava AK, Rajan R. Gray Matter Atrophy in a 6-OHDA-induced Model of Parkinson's Disease. Neuroscience 2024; 551:217-228. [PMID: 38843989 DOI: 10.1016/j.neuroscience.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) based brain morphometric changes in unilateral 6-hydroxydopamine (6-OHDA) induced Parkinson's disease (PD) model can be elucidated using voxel-based morphometry (VBM), study of alterations in gray matter volume and Machine Learning (ML) based analyses. METHODS We investigated gray matter atrophy in 6-OHDA induced PD model as compared to sham control using statistical and ML based analysis. VBM and atlas-based volumetric analysis was carried out at regional level. Support vector machine (SVM)-based algorithms wherein features (volume) extracted from (a) each of the 150 brain regions (b) statistically significant features (only) and (c) volumes of each cluster identified after application of VBM (VBM_Vol) were used for training the decision model. The lesion of the 6-OHDA model was validated by estimating the net contralateral rotational behaviour by the injection of apomorphine drug and motor impairment was assessed by rotarod and open field test. RESULTS AND DISCUSSION In PD, gray matter volume (GMV) atrophy was noted in bilateral cortical and subcortical brain regions, especially in the internal capsule, substantia nigra, midbrain, primary motor cortex and basal ganglia-thalamocortical circuits in comparison with sham control. Behavioural results revealed an impairment in motor performance. SVM analysis showed 100% classification accuracy, sensitivity and specificity at both 3 and 7 weeks using VBM_Vol. CONCLUSION Unilateral 6-OHDA induced GMV changes in both hemispheres at 7th week may be associated with progression of the disease in the PD model. SVM based approaches provide an increased classification accuracy to elucidate GMV atrophy.
Collapse
Affiliation(s)
- Sadhana Kumari
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bharti Rana
- Department of Computer Science, University of Delhi, Delhi 110007, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Achal Kumar Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
10
|
Pietracupa S, Ojha A, Belvisi D, Piervincenzi C, Tommasin S, Petsas N, De Bartolo MI, Costanzo M, Fabbrini A, Conte A, Berardelli A, Pantano P. Understanding the role of cerebellum in early Parkinson's disease: a structural and functional MRI study. NPJ Parkinsons Dis 2024; 10:119. [PMID: 38898032 PMCID: PMC11187155 DOI: 10.1038/s41531-024-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Increasing evidence suggests that the cerebellum may have a role in the pathophysiology of Parkinson's disease (PD). Hence, the scope of this study was to investigate whether there are structural and functional alterations of the cerebellum and whether they correlate with motor and non-motor symptoms in early PD patients. Seventy-six patients with early PD and thirty-one age and sex-matched healthy subjects (HS) were enrolled and underwent a 3 T magnetic resonance imaging (MRI) protocol. The following MRI analyses were performed: (1) volumes of 5 cerebellar regions of interest (sensorimotor and cognitive cerebellum, dentate, interposed, and fastigial nuclei); (2) microstructural integrity of the cerebellar white matter connections (inferior, middle, and superior cerebellar peduncles); (3) functional connectivity at rest of the 5 regions of interest already described in point 1 with the rest of brain. Compared to controls, early PD patients showed a significant decrease in gray matter volume of the dentate, interposed and fastigial nuclei, bilaterally. They also showed abnormal, bilateral white matter microstructural integrity in all 3 cerebellar peduncles. Functional connectivity of the 5 cerebellar regions of interest with several areas in the midbrain, basal ganglia and cerebral cortex was altered. Finally, there was a positive correlation between abnormal functional connectivity of the fastigial nucleus with the volume of the nucleus itself and a negative correlation with axial symptoms severity. Our results showed that structural and functional alterations of the cerebellum are present in PD patients and these changes contribute to the pathophysiology of PD in the early phase.
Collapse
Affiliation(s)
- S Pietracupa
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - A Ojha
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - D Belvisi
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - C Piervincenzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - S Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - N Petsas
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Rome, Italy
| | | | | | - A Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - A Conte
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - A Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - P Pantano
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Ysbæk-Nielsen AT. Connectome-based predictive modelling estimates individual cognitive status in Parkinson's disease. Parkinsonism Relat Disord 2024; 123:106020. [PMID: 38579439 DOI: 10.1016/j.parkreldis.2024.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION The progressive nature of Parkinson's disease (PD) affords emphasis on accurate early-stage individual-level assessment of risk and intervention appropriateness. In PD, cognitive impairment (CI) may follow or precede motor symptoms but are generally underdetected. In addition to impeding daily functioning and quality of life, CIs increase the risk for later conversion to dementia, providing a pressing need to develop novel tools to detect and interpret them. Connectome-based predictive modelling (CPM) is an emerging machine-learning approach to individual prediction that holds translational promise due to its noninvasiveness and simple implementation. The aim of this study was to investigate CPM's potential to predict and understand CIs in PD. METHODS Resting-state functional connectivity from 58 patients with PD of varying cognitive status was used to train a CPM-model to predict a global cognitive composite (GCC) score. The model was validated using cross-validation, permutation testing, and internal stability analyses. The combined predictive strength of two brain connectivity networks, positive and negative, directly and inversely correlated with GCC, respectively, was assessed. RESULTS The model significantly predicted individual GCC scores, r = 0.63, pperm < .05. Separately, the positive and negative networks were similar in performance, rs ≥ .58, ps < .05, but varied in anatomical distribution. CONCLUSIONS This study identified a connectome predictive of cognitive scores in PD, with features overlapping with established and emerging evidence on aberrant connectivity in PD-related CIs. Overall, CPM appears promising for clinical translation in this population, but longitudinal studies with out-of-sample validation are needed.
Collapse
|
12
|
Filip P, Mana J, Lasica A, Keller J, Urgošík D, May J, Mueller K, Jech R, Bezdicek O, Růžička F. Structural and microstructural predictors of cognitive decline in deep brain stimulation of subthalamic nucleus in Parkinson's disease. Neuroimage Clin 2024; 42:103617. [PMID: 38749145 PMCID: PMC11112358 DOI: 10.1016/j.nicl.2024.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND OBJECTIVES The intricate relationship between deep brain stimulation (DBS) in Parkinson's disease (PD) and cognitive impairment has lately garnered substantial attention. The presented study evaluated pre-DBS structural and microstructural cerebral patterns as possible predictors of future cognitive decline in PD DBS patients. METHODS Pre-DBS MRI data in 72 PD patients were combined with neuropsychological examinations and follow-up for an average of 2.3 years after DBS implantation procedure using a screening cognitive test validated for diagnosis of mild cognitive impairment in PD in a Czech population - Dementia Rating Scale 2. RESULTS PD patients who would exhibit post-DBS cognitive decline were found to have, already at the pre-DBS stage, significantly lower cortical thickness and lower microstructural complexity than cognitively stable PD patients. Differences in the regions directly related to cognition as bilateral parietal, insular and cingulate cortices, but also occipital and sensorimotor cortex were detected. Furthermore, hippocampi, putamina, cerebellum and upper brainstem were implicated as well, all despite the absence of pre-DBS differences in cognitive performance and in the position of DBS leads or stimulation parameters between the two groups. CONCLUSIONS Our findings indicate that the cognitive decline in the presented PD cohort was not attributable primarily to DBS of the subthalamic nucleus but was associated with a clinically silent structural and microstructural predisposition to future cognitive deterioration present already before the DBS system implantation.
Collapse
Affiliation(s)
- Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic; Department of Cybernetics, Czech Technical University in Prague, Prague, Czech Republic; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Josef Mana
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Andrej Lasica
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Jiří Keller
- Department of Radiology, Na Homolce Hospital, Prague, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jaromír May
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Karsten Mueller
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic.
| | - Ondrej Bezdicek
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Filip Růžička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| |
Collapse
|
13
|
Kerestes R, Laansma MA, Owens-Walton C, Perry A, van Heese EM, Al-Bachari S, Anderson TJ, Assogna F, Aventurato ÍK, van Balkom TD, Berendse HW, van den Berg KR, Mphys RB, Brioschi R, Carr J, Cendes F, Clark LR, Dalrymple-Alford JC, Dirkx MF, Druzgal J, Durrant H, Emsley HC, Garraux G, Haroon HA, Helmich RC, van den Heuvel OA, João RB, Johansson ME, Khachatryan S, Lochner C, McMillan CT, Melzer TR, Mosley P, Newman B, Opriessnig P, Parkes LM, Pellicano C, Piras F, Pitcher TL, Poston KL, Rango M, Roos A, Rummel C, Schmidt R, Schwingenschuh P, Silva LS, Smith V, Squarcina L, Stein DJ, Tavadyan Z, Tsai CC, Vecchio D, Vriend C, Wang JJ, Wiest R, Yasuda CL, Young CB, Jahanshad N, Thompson PM, van der Werf YD, Harding IH. Cerebellar Volume and Disease Staging in Parkinson's Disease: An ENIGMA-PD Study. Mov Disord 2023; 38:2269-2281. [PMID: 37964373 PMCID: PMC10754393 DOI: 10.1002/mds.29611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Max A. Laansma
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Conor Owens-Walton
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Andrew Perry
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Eva M. van Heese
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Sarah Al-Bachari
- Faculty of Health and Medicine, The University of Lancaster, Lancaster, UK
| | - Tim J. Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Neurology Department, Te Wahtu Ora - Health New Zealand Waitaha Canterbury, Christchurch, New Zew Zealand
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ítalo K. Aventurato
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Tim D. van Balkom
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam UMC, Dept. Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk W. Berendse
- Amsterdam UMC, Dept. Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Kevin R.E. van den Berg
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rebecca Betts Mphys
- School of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Ricardo Brioschi
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Jonathan Carr
- Division of Neurology, Tygerberg Hospital and Stellenbosch University, Cape Town, South Africa
| | - Fernando Cendes
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Lyles R. Clark
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John C. Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michiel F. Dirkx
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, USA
| | - Helena Durrant
- School of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Hedley C.A. Emsley
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gaëtan Garraux
- GIGA-CRC in vivo imaging, University of Liège, Belgium
- Department of Neurology, CHU Liège, Liège, Belgium
| | - Hamied A. Haroon
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rick C. Helmich
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Odile A. van den Heuvel
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam UMC, Dept. Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rafael B. João
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Martin E. Johansson
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Samson Khachatryan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
- Centers for Sleep and Movement Disorders, Somnus Neurology Clinic, Yerevan, Armenia
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Corey T. McMillan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tracy R. Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Philip Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- The Australian eHealth Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Benjamin Newman
- Department of Radiology and Medical Imaging, University of Virginia, USA
| | - Peter Opriessnig
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Toni L. Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kathleen L. Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mario Rango
- Excellence Center for Advanced MR Techniques and Parkinson’s Disease Center, Neurology unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
- Dept of Neurosciences, Neurology Unit, Fondazione Ca’ Granda, IRCCS, Ospedale Policlinico, Univeristy of Milan, Milano, Italy
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, (SCAN) University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Lucas S. Silva
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Viktorija Smith
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Zaruhi Tavadyan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
- Centers for Sleep and Movement Disorders, Somnus Neurology Clinic, Yerevan, Armenia
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Chris Vriend
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, Dept. Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch Keelung City, Taiwan
- Healthy Ageing Research Center, ChangGung University, Taiwan
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, (SCAN) University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clarissa L. Yasuda
- Department of Neurology, University of Campinas - UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Christina B. Young
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ysbrand D. van der Werf
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
14
|
Bower AE, Crisomia SJ, Chung JW, Martello JP, Burciu RG. Free water imaging unravels unique patterns of longitudinal structural brain changes in Parkinson's disease subtypes. Front Neurol 2023; 14:1278065. [PMID: 37965163 PMCID: PMC10642764 DOI: 10.3389/fneur.2023.1278065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background Research shows that individuals with Parkinson's disease (PD) who have a postural instability and gait difficulties (PIGD) subtype have a faster disease progression compared to those with a tremor dominant (TD) subtype. Nevertheless, our understanding of the structural brain changes contributing to these clinical differences remains limited, primarily because many brain imaging techniques are only capable of detecting changes in the later stages of the disease. Objective Free water (FW) has emerged as a robust progression marker in several studies, showing increased values in the posterior substantia nigra that predict symptom worsening. Here, we examined longitudinal FW changes in TD and PIGD across multiple brain regions. Methods Participants were TD and PIGD enrolled in the Parkinson's Progression Marker Initiative (PPMI) study who underwent diffusion MRI at baseline and 2 years later. FW changes were quantified for regions of interest (ROI) within the basal ganglia, thalamus, brainstem, and cerebellum. Results Baseline FW in all ROIs did not differ between groups. Over 2 years, PIGD had a greater percentage increase in FW in the putamen, globus pallidus, and cerebellar lobule V. A logistic regression model incorporating percent change in motor scores and FW in these brain regions achieved 91.4% accuracy in discriminating TD and PIGD, surpassing models based solely on clinical measures (74.3%) or imaging (76.1%). Conclusion The results further suggest the use of FW to study disease progression in PD and provide insight into the differential course of brain changes in early-stage PD subtypes.
Collapse
Affiliation(s)
- Abigail E. Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Sophia J. Crisomia
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Justin P. Martello
- Department of Neurosciences, Christiana Care Health System, Newark, DE, United States
| | - Roxana G. Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
15
|
Swainson A, Woodward KM, Boca M, Rolinski M, Collard P, Cerminara NL, Apps R, Whone AL, Gilchrist ID. Slower rates of prism adaptation but intact aftereffects in patients with early to mid-stage Parkinson's disease. Neuropsychologia 2023; 189:108681. [PMID: 37709193 DOI: 10.1016/j.neuropsychologia.2023.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
There is currently mixed evidence on the effect of Parkinson's disease on motor adaptation. Some studies report that patients display adaptation comparable to age-matched controls, while others report a complete inability to adapt to novel sensory perturbations. Here, early to mid-stage Parkinson's patients were recruited to perform a prism adaptation task. When compared to controls, patients showed slower rates of initial adaptation but intact aftereffects. These results support the suggestion that patients with early to mid-stage Parkinson's disease display intact adaptation driven by sensory prediction errors, as shown by the intact aftereffect. But impaired facilitation of performance through cognitive strategies informed by task error, as shown by the impaired initial adaptation. These results support recent studies that suggest that patients with Parkinson's disease retain the ability to perform visuomotor adaptation, but display altered use of cognitive strategies to aid performance and generalises these previous findings to the classical prism adaptation task.
Collapse
Affiliation(s)
- Alex Swainson
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, BS8 1TD, United Kingdom.
| | - Kathryn M Woodward
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, United Kingdom
| | - Mihaela Boca
- Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5FN, United Kingdom
| | - Michal Rolinski
- Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5FN, United Kingdom
| | - Philip Collard
- University of Bristol, School of Psychological Science, Bristol, BS8 1TU, United Kingdom
| | - Nadia L Cerminara
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, BS8 1TD, United Kingdom
| | - Richard Apps
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, BS8 1TD, United Kingdom
| | - Alan L Whone
- Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5FN, United Kingdom
| | - Iain D Gilchrist
- University of Bristol, School of Psychological Science, Bristol, BS8 1TU, United Kingdom
| |
Collapse
|
16
|
Wu Y, Xu XJ, Sun X, Zhai H, Wang T, Cao XB, Xu Y. Integrated PET/MRI With 11C-CFT and 18F-FDG for levodopa response difference in Parkinson's disease. Behav Brain Res 2023; 454:114609. [PMID: 37532003 DOI: 10.1016/j.bbr.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
AIM Parkinson's disease is one of the most common neurodegenerative diseases. Excellent levodopa responsiveness has been proposed as a characteristic supporting feature in substantiating the PD diagnosis. However, a small portion of clinically established PD patients shows poor levodopa response. This study aims to investigate brain function alterations of PD patients with poor levodopa responsiveness by PET/MRI. METHOD A total of 46 PD patients were recruited. They all completed 11C-CFT PET/MRI scans and the acute levodopa challenge test. Among these 46 PD patients, 42 participants further underwent 18F-FDG PET/MRI scans. Clinical variables regarding demographic data, disease features and cognition scales were also collected. Based on the improvement rate of UPDRS-III, PD patients were divided into non-responders (improvement rate < 33 %) and responders (improvement rate ≥ 33 %). Statistical parametric zapping was performed to analyze molecular imaging. Dopaminergic uptake and metabolism of 70 brain regions were converted to quantitative values and expressed as standard uptake value (SUV). SUV was further normalized by the cerebellum. The resulting SUV ratios and clinical variables were then compared by SPSS. RESULTS The difference between levodopa non-responders (n = 17) and responders (n = 29) in the UPDRS III baseline was statistically significant and the former had a lower UPDRS III baseline (19 (10, 32), p<0.05). In contrast, no statistical difference between these two groups was found in age, gender, disease duration, cognition, motor subtype and Hoehn-Yahr stage. Dopaminergic uptake differences between levodopa non-responders (n = 17) and responders (n = 29) were shown in the left inferior frontal cortex (1.00 ± 0.09 vs 1.07 ± 0.08, p < 0.05 and FDR < 0.2), the right posterior cingulum (1.10 ± 0.10 vs 1.20 ± 0.13, p < 0.05 and FDR < 0.2) and the right insula (1.21 ± 0.12 vs 1.30 ± 0.10, p < 0.05 and FDR < 0.2). The metabolic alterations between levodopa non-responders (n = 16) and responders (n = 26) were shown in the right supplementary motor area (1.30 (1.18, 1.39) vs 1.41 (1.31, 1.53), p < 0.05 and FDR < 0.2), right precuneus (1.37 ± 0.10 vs 1.47 ± 0.18, p < 0.05 and FDR < 0.2), right parietal cortex (1.14 ± 0.15 vs 1.27 ± 0.21, p < 0.05 and FDR < 0.2), right supramarginal gyrus (1.16 (1.12, 1.26) vs 1.25 (1.14, 1.46), p < 0.05 and FDR < 0.2), right postcentral gyrus (1.15 (1.08, 1.32) vs 1.24 (1.17, 1.39), p < 0.05 and FDR < 0.2), medulla (0.75 ± 0.07 vs 0.80 ± 0.07, p < 0.05 and FDR < 0.2), right rolandic operculum (1.25 (1.18, 1.32) vs 1.33 (1.25, 1.50), p < 0.05 and FDR < 0.2), right olfactory (0.95 (0.91, 1.01) vs 1.01 (0.95, 1.15), p < 0.05 and FDR < 0.2), the right insula (1.15 (1.06, 1.22) vs 1.21 (1.12, 1.35), p < 0.05 and FDR < 0.2) and the left cerebellum crus (0.96 (0.91, 1.01) vs 0.92 (0.86, 0.96), p < 0.05 and FDR < 0.2). CONCLUSIONS PD patients with poor response to levodopa showed less severe impairment of baseline motor symptoms, more severe dopaminergic deficits in the left inferior frontal, right posterior cingulate cortex and the right insula, and lower metabolism in the right supplementary motor area, right precuneus, right parietal cortex, right supramarginal gyrus, right postcentral gyrus, medulla, right rolandic operculum, right olfactory, the right insula and higher metabolism in the left cerebellum crus.
Collapse
Affiliation(s)
- Yi Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jun Xu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhai
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xue-Bing Cao
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Xu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Jiang L, Zhuo J, Furman A, Fishman PS, Gullapalli R. Cerebellar functional connectivity change is associated with motor and neuropsychological function in early stage drug-naïve patients with Parkinson's disease. Front Neurosci 2023; 17:1113889. [PMID: 37425003 PMCID: PMC10324581 DOI: 10.3389/fnins.2023.1113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Parkinson's Disease (PD) is a progressive neurodegenerative disorder affecting both motor and cognitive function. Previous neuroimaging studies have reported altered functional connectivity (FC) in distributed functional networks. However, most neuroimaging studies focused on patients at an advanced stage and with antiparkinsonian medication. This study aims to conduct a cross-sectional study on cerebellar FC changes in early-stage drug-naïve PD patients and its association with motor and cognitive function. Methods Twenty-nine early-stage drug-naïve PD patients and 20 healthy controls (HCs) with resting-state fMRI data and motor UPDRS and neuropsychological cognitive data were extracted from the Parkinson's Progression Markers Initiative (PPMI) archives. We used seed-based resting-state fMRI (rs-fMRI) FC analysis and the cerebellar seeds were defined based on the hierarchical parcellation of the cerebellum (AAL atlas) and its topological function mapping (motor cerebellum and non-motor cerebellum). Results The early stage drug-naïve PD patients had significant differences in cerebellar FC when compared with HCs. Our findings include: (1) Increased intra-cerebellar FC within motor cerebellum, (2) increase motor cerebellar FC in inferior temporal gyrus and lateral occipital gyrus within ventral visual pathway and decreased motor-cerebellar FC in cuneus and dorsal posterior precuneus within dorsal visual pathway, (3) increased non-motor cerebellar FC in attention, language, and visual cortical networks, (4) increased vermal FC in somatomotor cortical network, and (5) decreased non-motor and vermal FC within brainstem, thalamus and hippocampus. Enhanced FC within motor cerebellum is positively associated with the MDS-UPDRS motor score and enhanced non-motor FC and vermal FC is negatively associated with cognitive function test scores of SDM and SFT. Conclusion These findings provide support for the involvement of cerebellum at an early stage and prior to clinical presentation of non-motor features of the disease in PD patients.
Collapse
Affiliation(s)
- Li Jiang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew Furman
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S. Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
19
|
Chung JW, Bower AE, Malik I, Martello JP, Knight CA, Jeka JJ, Burciu RG. Imaging the lower limb network in Parkinson's disease. Neuroimage Clin 2023; 38:103399. [PMID: 37058977 PMCID: PMC10131075 DOI: 10.1016/j.nicl.2023.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Despite the significant impact of lower limb symptoms on everyday life activities in Parkinson's disease (PD), knowledge of the neural correlates of lower limb deficits is limited. OBJECTIVE We ran an fMRI study to investigate the neural correlates of lower limb movements in individuals with and without PD. METHODS Participants included 24 PD and 21 older adults who were scanned while performing a precisely controlled isometric force generation task by dorsiflexing their ankle. A novel MRI-compatible ankle dorsiflexion device that limits head motion during motor tasks was used. The PD were tested on their more affected side, whereas the side in controls was randomized. Importantly, PD were tested in the off-state, following overnight withdrawal from antiparkinsonian medication. RESULTS The foot task revealed extensive functional brain changes in PD compared to controls, with reduced fMRI signal during ankle dorsiflexion within the contralateral putamen and M1 foot area, and ipsilateral cerebellum. The activity of M1 foot area was negatively correlated with the severity of foot symptoms based on the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III). CONCLUSION Overall, current findings provide new evidence of brain changes underlying motor symptoms in PD. Our results suggest that pathophysiology of lower limb symptoms in PD appears to involve both the cortico-basal ganglia and cortico-cerebellar motor circuits.
Collapse
Affiliation(s)
- Jae Woo Chung
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Abigail E Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Ibrahim Malik
- Center for Biomedical & Brain Imaging, University of Delaware, Newark, DE, United States
| | - Justin P Martello
- Department of Neurosciences, Christiana Care Health System, Newark, DE, United States
| | - Christopher A Knight
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| | - John J Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
20
|
Cerebellar alterations in Parkinson's disease with postural instability and gait disorders. J Neurol 2023; 270:1735-1744. [PMID: 36534200 DOI: 10.1007/s00415-022-11531-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Few studies interrogated the involvement of cerebellum in modulating gait in Parkinson's disease (PD) patients with postural instability and gait disorders (PD-PIGD). This study aimed at assessing cerebellar atrophy and activity alterations during functional MRI (fMRI) gait-simulating motor- and dual-tasks in PD-PIGD. METHODS Twenty-one PD-PIGD and 23 healthy controls underwent clinical assessment, structural MRI, and fMRI including a motor-task (foot anti-phase movements) and a dual-task (foot anti-phase movements while counting backwards by threes). Grey matter cerebellar volumes were assessed using SUIT atlas. FMRI activations were extracted from each cerebellar lobule, and we correlated cerebellar and basal ganglia activity. RESULTS PD-PIGD patients had reduced volumes of cerebellar motor and non-motor areas relative to controls. During fMRI motor-task, patients showed greater activation of cognitive cerebellar areas (VI and Crus I-II) vs controls. During fMRI dual-task, PD-PIGD patients showed increased activity of cognitive areas (Crus II) and reduced activity of motor areas (I-IV). Cerebellar structural alterations correlated with increased fMRI activity of cerebellar cognitive areas and with lower executive-attentive performance. The increased activity of Crus I during the motor-task correlated with a better motor performance in PD-PIGD. Moreover, the increased activity of cerebellum correlated with a reduced activity of putamen. CONCLUSIONS In PD-PIGD, the increased activity of non-motor cerebellar areas during gait-simulating tasks may be a consequence of grey matter atrophy or an attempt to compensate the functional failure of cerebellar motor areas and basal ganglia. Cerebellar MRI metrics are useful to characterize brain correlates of motor and dual-task abilities in PD-PIGD patients.
Collapse
|
21
|
Pietracupa S, Belvisi D, Piervincenzi C, Tommasin S, Pasqua G, Petsas N, De Bartolo MI, Fabbrini A, Costanzo M, Manzo N, Berardelli A, Pantano P. White and gray matter alterations in de novo PD patients: which matter most? J Neurol 2023; 270:2734-2742. [PMID: 36773059 DOI: 10.1007/s00415-023-11607-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVES This paper aimed to identify white matter (WM) and gray matter (GM) abnormalities in a sample of early PD patients, and their correlations with motor and non-motor symptom severity. METHODS We enrolled 62 de novo PD patients and 31 healthy subjects. Disease severity and non-motor symptom burden were assessed by the Unified Parkinson's Disease Rating Scale part III and the Non-Motor Symptoms Scale, respectively. Cognitive performance was assessed using Montreal Cognitive Assessment and Frontal Assessment Battery. All subjects underwent a 3-Tesla MRI protocol. MRI analyses included tract-based spatial statistics, cortical thickness, and subcortical and cerebellar volumetry. RESULTS In comparison to control subjects, PD patients exhibited lower fractional anisotropy and higher mean, axial, and radial diffusivity in most WM bundles, including corticospinal tracts, the internal and external capsule, the anterior and posterior thalamic radiations, the genu and body of the corpus callosum, cerebellar peduncles, and superior and inferior longitudinal and fronto-occipital fasciculi. Correlations between Montreal Cognitive Assessment scores and fractional anisotropy values in the right posterior thalamic radiation, left superior corona radiata, right inferior-fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral anterior thalamic radiations, and bilateral superior longitudinal fasciculi were found. Smaller cerebellar volumes in early PD patients in the left and right crus I were also found. No GM changes were present in subcortical or cortical regions. CONCLUSION The combined evaluation of WM and GM in the same patient sample demonstrates that WM microstructural abnormalities precede GM structural changes in early PD patients.
Collapse
Affiliation(s)
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Silvia Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Gabriele Pasqua
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Andrea Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Kiris I, Kukula-Koch W, Karayel-Basar M, Gurel B, Coskun J, Baykal AT. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: Alleviating effect of palmatine. Biomed Pharmacother 2023; 158:114111. [PMID: 36502756 DOI: 10.1016/j.biopha.2022.114111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent diseases that lead to memory deficiencies, severe behavioral abnormalities, and ultimately death. The need for more appropriate treatment of AD continues, and remains a sought-after goal. Previous studies showed palmatine (PAL), an isoquinoline alkaloid, might have the potential for combating AD because of its in vitro and in vivo activities. In this study, we aimed to assess PAL's therapeutic potential and gain insights into the working mechanism on protein level in the AD mouse model brain, for the first time. To this end, PAL was administered to 12-month-old 5xFAD mice at two doses after its successful isolation from the Siberian barberry shrub. PAL (10 mg/kg) showed statistically significant improvement in the memory and learning phase on the Morris water maze test. The PAL's ability to pass through the blood-brain barrier was verified via Multiple Reaction Monitoring (MRM). Label-free proteomics analysis revealed PAL administration led to changes most prominently in the cerebellum, followed by the hippocampus, but none in the cortex. Most of the differentially expressed proteins in PAL compared to the 5xFAD control group (ALZ) were the opposite of those in ALZ in comparison to healthy Alzheimer's littermates (ALM) group. HS105, HS12A, and RL12 were detected as hub proteins in the cerebellum. Collectively, here we present PAL as a potential therapeutic candidate owing to its alleviating effect in 5xFAD mice on not only cognitive impairment but also proteomes in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Gurel
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
23
|
Lin CR, Amokrane N, Chen S, Chen TX, Lai R, Trinh P, Minyetty MJ, Emmerich H, Pan M, Claassen DO, Kuo S. Cerebellar impulsivity-compulsivity assessment scale. Ann Clin Transl Neurol 2023; 10:48-57. [PMID: 36401598 PMCID: PMC9852385 DOI: 10.1002/acn3.51698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The cerebellum has been identified as the key brain region that modulates reward processing in animal models. Consistently, we recently found that people with cerebellar ataxia have impulsive and compulsive behaviors (ICBs), the main symptoms related to abnormal reward processing. Due to the lack of a validated scale to quantitatively measure ICBs in cerebellar disorders, we aim to develop and validate a new scale, Cerebellar Impulsivity-Compulsivity Assessment (CIA). METHODS We recruited 62 cerebellar ataxia cases, categorized into those with ICBs and those without. We developed a preliminary version of CIA, containing 17 questions. We studied the internal consistency, test-retest reliability, and inter-rater reliability to formulate the final version of CIA, which constitutes only 10 questions. The receiver operating characteristic curve (ROC) was generated to assess the sensitivity and specificity of CIA. RESULTS Cerebellar ataxia cases with ICBs have threefold higher total preliminary CIA scores than those without ICBs (12.06 ± 5.96 vs. 4.68 ± 3.50, p = 0.038). Cronbach's alpha revealed good internal consistency across all items (α > 0.70). By performing the test-retest reliability and inter-rater reliability on the preliminary version of CIA, we excluded seven questions (r < 0.70) and generated the final version of CIA. Based on the ROC, a score of 8.0 in CIA was chosen as the cut-off for ICBs in individuals with cerebellar ataxia with 81% sensitivity and 81% specificity. INTERPRETATION CIA is a novel tool to assess ICBs in cerebellar ataxia and broaden our understanding of the cerebellum-related cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Chi‐Ying R. Lin
- Parkinson's Disease Center and Movement Disorders Clinic, Department of NeurologyBaylor College of MedicineHoustonTexasUSA
- Alzheimer's Disease and Memory Disorders Center, Department of NeurologyBaylor College of MedicineHoustonTexasUSA
| | - Nadia Amokrane
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Serena Chen
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Tiffany X. Chen
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
- Department of Biomedical EngineeringWhiting School of Engineering, Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruo‐Yah Lai
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Paula Trinh
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Michael J. Minyetty
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Haidyn Emmerich
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Ming‐Kai Pan
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
24
|
Ding H, Droby A, Anwar AR, Bange M, Hausdorff JM, Nasseroleslami B, Mirelman A, Maidan I, Groppa S, Muthuraman M. Treadmill training in Parkinson's disease is underpinned by the interregional connectivity in cortical-subcortical network. NPJ Parkinsons Dis 2022; 8:153. [PMID: 36369264 PMCID: PMC9652466 DOI: 10.1038/s41531-022-00427-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Treadmill training (TT) has been extensively used as an intervention to improve gait and mobility in patients with Parkinson's disease (PD). Regional and global effects on brain activity could be induced through TT. Training effects can lead to a beneficial shift of interregional connectivity towards a physiological range. The current work investigates the effects of TT on brain activity and connectivity during walking and at rest by using both functional near-infrared spectroscopy and functional magnetic resonance imaging. Nineteen PD patients (74.0 ± 6.59 years, 13 males, disease duration 10.45 ± 6.83 years) before and after 6 weeks of TT, along with 19 age-matched healthy controls were assessed. Interregional effective connectivity (EC) between cortical and subcortical regions were assessed and its interrelation to prefrontal cortex (PFC) activity. Support vector regression (SVR) on the resting-state ECs was used to predict prefrontal connectivity. In response to TT, EC analysis indicated modifications in the patients with PD towards the level of healthy controls during walking and at rest. SVR revealed cerebellum related connectivity patterns that were associated with the training effect on PFC. These findings suggest that the potential therapeutic effect of training on brain activity may be facilitated via changes in compensatory modulation of the cerebellar interregional connectivity.
Collapse
Affiliation(s)
- Hao Ding
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Amgad Droby
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Abdul Rauf Anwar
- Biomedical Engineering Centre, UET Lahore (KSK Campus), Lahore, Pakistan
| | - Manuel Bange
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jeffrey M Hausdorff
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Anat Mirelman
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbal Maidan
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
25
|
Salazar Leon LE, Sillitoe RV. Potential Interactions Between Cerebellar Dysfunction and Sleep Disturbances in Dystonia. DYSTONIA 2022; 1. [PMID: 37065094 PMCID: PMC10099477 DOI: 10.3389/dyst.2022.10691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Dystonia is the third most common movement disorder. It causes debilitating twisting postures that are accompanied by repetitive and sometimes intermittent co- or over-contractions of agonist and antagonist muscles. Historically diagnosed as a basal ganglia disorder, dystonia is increasingly considered a network disorder involving various brain regions including the cerebellum. In certain etiologies of dystonia, aberrant motor activity is generated in the cerebellum and the abnormal signals then propagate through a “dystonia circuit” that includes the thalamus, basal ganglia, and cerebral cortex. Importantly, it has been reported that non-motor defects can accompany the motor symptoms; while their severity is not always correlated, it is hypothesized that common pathways may nevertheless be disrupted. In particular, circadian dysfunction and disordered sleep are common non-motor patient complaints in dystonia. Given recent evidence suggesting that the cerebellum contains a circadian oscillator, displays sleep-stage-specific neuronal activity, and sends robust long-range projections to several subcortical regions involved in circadian rhythm regulation, disordered sleep in dystonia may result from cerebellum-mediated dysfunction of the dystonia circuit. Here, we review the evidence linking dystonia, cerebellar network dysfunction, and cerebellar involvement in sleep. Together, these ideas may form the basis for the development of improved pharmacological and surgical interventions that could take advantage of cerebellar circuitry to restore normal motor function as well as non-motor (sleep) behaviors in dystonia.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
- Address correspondence to: Dr. Roy V. Sillitoe, Tel: 832-824-8913, Fax: 832-825-1251,
| |
Collapse
|
26
|
Beeraka NM, Nikolenko VN, Khaidarovich ZF, Valikovna OM, Aliagayevna RN, Arturovna ZL, Alexandrovich KA, Mikhaleva LM, Sinelnikov MY. Recent Investigations on the Functional Role of Cerebellar Neural Networks in Motor Functions & Nonmotor Functions -Neurodegeneration. Curr Neuropharmacol 2022; 20:1865-1878. [PMID: 35272590 PMCID: PMC9886798 DOI: 10.2174/1570159x20666220310121441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is a well-established primary brain center in charge of controlling sensorimotor functions and non-motor functions. Recent reports depicted the significance of cerebellum in higher-order cognitive functions, including emotion-processing, language, reward-related behavior, working memory, and social behavior. As it can influence diverse behavioral patterns, any defects in cerebellar functions could invoke neuropsychiatric diseases as indicated by the incidence of alexithymia and induce alterations in emotional and behavioral patterns. Furthermore, its defects can trigger motor diseases, such as ataxia and Parkinson's disease (PD). In this review, we have extensively discussed the role of cerebellum in motor and non-motor functions and how the cerebellum malfunctions in relation to the neural circuit wiring as it could impact brain function and behavioral outcomes in patients with neuropsychiatric diseases. Relevant data regarding cerebellar non-motor functions have been vividly described, along with anatomy and physiology of these functions. In addition to the defects in basal ganglia, the lack of activity in motor related regions of the cerebellum could be associated with the severity of motor symptoms. All together, this review delineates the importance of cerebellar involvement in patients with PD and unravels a crucial link for various clinical aspects of PD with specific cerebellar sub-regions.
Collapse
Affiliation(s)
| | - Vladimir N. Nikolenko
- Address correspondence to these authors at the Department of Human Anatomy,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; E-mail:
| | | | | | | | | | | | | | - Mikhail Y. Sinelnikov
- Address correspondence to these authors at the Department of Human Anatomy,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; E-mail:
| |
Collapse
|
27
|
Using Real-Time fMRI Neurofeedback to Modulate M1-Cerebellum Connectivity. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8744982. [PMID: 36082347 PMCID: PMC9448559 DOI: 10.1155/2022/8744982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Objective The potential of neurofeedback to alter the M1-cerebellum connectivity was explored using motor imagery-based rt-fMRI. These regions were chosen due to their importance in motor performance and motor rehabilitation. Methods Four right-handed individuals were recruited to examine the potential to change the M1-cerebellum neurofeedback link. The University of Glasgow Cognitive Neuroimaging Centre used a 3T MRI scanner from January 2019 to January 2020 to conduct this prospective study. Everyone participated in each fMRI session, which included six NF training runs. Participants were instructed to imagine complicated hand motions during the NF training to raise a thermometer bar's height. To contrast the correlation coefficients between the initial and last NF runs, a t-test was performed post hoc. Results The neurofeedback connection between M1 and the cerebellum was strengthened in each participant. Motor imagery strategy was a significant task in training M1-cerebellum connectivity as participants used it successfully to enhance the activation level between these regions during M1-cerebellum modulation using real-time fMRI. The t-test and linear regression, on the other hand, showed this increase to be insignificant. Conclusion A novel technique to manipulate M1-cerebellum connectivity was discovered using real-time fMRI NF. This study showed that each participant's neurofeedback connectivity between M1 and cerebellum was enhanced. This increase, on the other hand, was insignificant statistically. The results showed that the connectivity between both areas increased positively. Through the integration of fMRI and neurofeedback, M1-cerebellum connectivity can be positively affected.
Collapse
|
28
|
Kim YJ, Park CW, Shin HW, Lee HS, Kim YJ, Yun M, Lee PH, Sohn YH, Jeong Y, Chung SJ. Identifying the white matter structural network of motor reserve in early Parkinson's disease. Parkinsonism Relat Disord 2022; 102:108-114. [PMID: 35987039 DOI: 10.1016/j.parkreldis.2022.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Motor reserve refers to the individual capacity to cope with nigrostriatal dopamine depletion in Parkinson's disease (PD). This study aimed to explore the white matter structural network associated with motor reserve in patients with newly diagnosed PD. METHODS A total of 238 patients with early-stage drug-naïve PD who underwent 18F-FP-CIT PET and brain MRI scans at initial assessment were enrolled. We estimated individual motor reserve based on the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) scores and dopamine transporter availability in the posterior putamen using a residual model. Then, we performed threshold-free network-based statistics (TFNBS) analysis to identify the structural brain network associated with the estimated motor reserve. We also assessed the effect of the network connectivity strength on the longitudinal increase in levodopa-equivalent dose (LED). RESULTS The mean age at PD symptom onset was 69.10 ± 9.03 years and the mean UPDRS-III score at the time of PD diagnosis was 22.44 ± 9.72. TFNBS analysis identified a motor reserve-associated structural network whose nodes were mainly in the frontal region and cerebellum. Higher network strength (i.e., greater motor reserve) was associated with a slower longitudinal increase in LED during a 3-year follow-up period. CONCLUSION The structural brain network is associated with motor reserve in patients with PD. Connectivity strength within the identified network indicates the individual's capacity to tolerate PD-related pathologies, which is maintained with disease progression and affects the long-term motor prognosis of PD.
Collapse
Affiliation(s)
- Yae Ji Kim
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Won Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|
29
|
Action and emotion perception in Parkinson's disease: A neuroimaging meta-analysis. Neuroimage Clin 2022; 35:103031. [PMID: 35569229 PMCID: PMC9112018 DOI: 10.1016/j.nicl.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
The neural substrates for action and emotion perception deficits in PD are still unclear. We addressed this issue via coordinate-based meta-analyses of previous fMRI data. PD patients exhibit decreased response in the basal ganglia. PD patients exhibit a trend toward decreased response in the parietal areas. PD patients exhibit a trend toward increased activation in the posterior cerebellum. Patients with Parkinson disease (PD) may show impairments in the social perception. Whether these deficits have been consistently reported, it remains to be clarified which brain alterations subtend them. To this aim, we conducted a neuroimaging meta-analysis to compare the brain activity during social perception in patients with PD versus healthy controls. Our results show that PD patients exhibit a significantly decreased response in the basal ganglia (putamen and pallidum) and a trend toward decreased activity in the mirror system, particularly in the left parietal cortex (inferior parietal lobule and intraparietal sulcus). This reduced activation may be tied to a disruption of cognitive resonance mechanisms and may thus constitute the basis of impaired others’ representations underlying action and emotion perception. We also found increased activation in the posterior cerebellum in PD, although only in a within-group analysis and not in comparison with healthy controls. This cerebellar activation may reflect compensatory mechanisms, an aspect that deserves further investigation. We discuss the clinical implications of our findings for the development of novel social skill training programs for PD patients.
Collapse
|
30
|
Panichi R, Dieni CV, Sullivan JA, Biscarini A, Contemori S, Faralli M, Pettorossi VE. Inhibition of androgenic pathway impairs encoding of cerebellar‐dependent motor learning in male rats. J Comp Neurol 2022; 530:2014-2032. [DOI: 10.1002/cne.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Roberto Panichi
- Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Cristina V. Dieni
- Department of Neurobiology and Evelyn McKnight Brain Institute University of Alabama at Birmingham Birmingham Alabama USA
| | | | - Andrea Biscarini
- Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Samuele Contemori
- Center for Sensorimotor Performance, School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Queensland Australia
| | - Mario Faralli
- Department of Medical‐Surgical Specialization, Otolaryngology and Cervicofacial Surgery Division University of Perugia Perugia Italy
| | | |
Collapse
|
31
|
Cascone AD, Langella S, Sklerov M, Dayan E. Frontoparietal network resilience is associated with protection against cognitive decline in Parkinson's disease. Commun Biol 2021; 4:1021. [PMID: 34471211 PMCID: PMC8410800 DOI: 10.1038/s42003-021-02478-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Though Parkinson's disease is primarily defined as a movement disorder, it is also characterized by a range of non-motor symptoms, including cognitive decline. The onset and progression of cognitive decline in individuals with Parkinson's disease is variable, and the neurobiological mechanisms that contribute to, or protect against, cognitive decline in Parkinson's disease are poorly understood. Using resting-state functional magnetic resonance imaging data collected from individuals with Parkinson's disease with and without cognitive decline, we examined the relationship between topological brain-network resilience and cognition in Parkinson's disease. By leveraging network attack analyses, we demonstrate that relative to individuals with Parkinson's disease experiencing cognitive decline, the frontoparietal network in cognitively stable individuals with Parkinson's disease is significantly more resilient to network perturbation. Our findings suggest that the topological robustness of the frontoparietal network is associated with the absence of cognitive decline in individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Arianna D Cascone
- Neuroscience Curriculum, University of North at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie Langella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miriam Sklerov
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
32
|
Dan X, Hu Y, Sun J, Gao L, Zhou Y, Ma J, Doyon J, Wu T, Chan P. Altered Cerebellar Resting-State Functional Connectivity in Early-Stage Parkinson's Disease Patients With Cognitive Impairment. Front Neurol 2021; 12:678013. [PMID: 34512503 PMCID: PMC8425347 DOI: 10.3389/fneur.2021.678013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Cognitive impairment is one of the most prominent non-motor symptoms in Parkinson's disease (PD), due in part to known cerebellar dysfunctions. Furthermore, previous studies have reported altered cerebellar functional connectivity (FC) in PD patients. Yet whether these changes are also due to the cognitive deficits in PD remain unclear. Methods: A total of 122 non-dementia participants, including 64 patients with early PD and 58 age- and gender-matched elderly controls were stratified into four groups based on their cognitive status (normal cognition vs. cognitive impairment). Cerebellar volumetry and FC were investigated by analyzing, respectively, structural and resting-state functional MRI data among groups using quality control and quantitative measures. Correlation analysis between MRI metrics and clinical features (motor and cognitive scores) were performed. Results: Compared to healthy control subjects with no cognitive deficits, altered cerebellar FC were observed in early PD participants with both motor and cognitive deficits, but not in PD patients with normal cognition, nor elderly subjects showing signs of a cognitive impairment. Moreover, connectivity between the "motor" cerebellum and SMA was positively correlated with motor scores, while intracerebellar connectivity was positively correlated with cognitive scores in PD patients with cognitive impairment. No cerebellar volumetric difference was observed between groups. Conclusions: These findings show that altered cerebellar FC during resting state in early PD patients may be driven not solely by the motor deficits, but by cognitive deficits as well, hence highlighting the interplay between motor and cognitive functioning, and possibly reflecting compensatory mechanisms, in the early PD.
Collapse
Affiliation(s)
- Xiaojuan Dan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Sun
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linlin Gao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Julien Doyon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tao Wu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders Parkinson's Disease Center, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Altered Cerebellum Spontaneous Activity in Juvenile Autism Spectrum Disorders Associated with Clinical Traits. J Autism Dev Disord 2021; 52:2497-2504. [PMID: 34184142 DOI: 10.1007/s10803-021-05167-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. The associations between the cerebellum and clinical traits remain unclear. We performed amplitude of low-frequency fluctuation (ALFF) analysis to explore the associations between spontaneous brain activity and clinical traits. 361 juvenile ASD patients were included from the ABIDEII database. In the ASD group, the mean ALFF values of cerebellum 4 5 were correlated with SRS awareness and communication. The mean ALFF values of cerebellum 6 and vermis 4 5 were both positively correlated with SRS total, awareness, communication, and motivation. In contrast, the mean ALFF values of vermis 1 2 were negatively correlated with SRS total, awareness, and mannerisms. Our study suggests a role of the cerebellum in functional impairments in ASD.
Collapse
|
34
|
Hannaway N, Lao-Kaim NP, Martín-Bastida A, Roussakis AA, Howard J, Wall MB, Loane C, Barker RA, Piccini P. Longitudinal changes in movement-related functional MRI activity in Parkinson's disease patients. Parkinsonism Relat Disord 2021; 87:61-69. [PMID: 33975081 DOI: 10.1016/j.parkreldis.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Functional brain imaging has shown alterations in the basal ganglia, cortex and cerebellum in Parkinson's disease patients. However, few functional imaging studies have tested how these changes evolve over time. Our study aimed to test the longitudinal progression of movement-related functional activity in Parkinson's disease patients. METHODS At baseline, 48 Parkinson's disease patients and 16 healthy controls underwent structural and functional magnetic resonance imaging during a joystick motor task. Patients had repeated imaging after 18-months (n = 42) and 36-months (n = 32). T-tests compared functional responses between Parkinson's disease patients and controls, and linear mixed effects models examined longitudinal differences within Parkinson's disease. Correlations of motor-activity with bradykinesia, rigidity and tremor were undertaken. All contrasts used whole-brain analyses, thresholded at Z > 3.1 with a cluster-wise P < 0.05. RESULTS Baseline activation was significantly greater in patients than controls across contralateral parietal and occipital regions, ipsilateral precentral gyrus and thalamus. Longitudinally, patients showed significant increases in cerebellar activity at successive visits following baseline. Task-related activity also increased in the contralateral motor, parietal and temporal areas at 36 months compared to baseline, however this was reduced when controlling for motor task performance. CONCLUSION We have shown that there are changes over time in the blood-activation level dependent response of patients with Parkinson's disease undertaking a simple motor task. These changes are observed primarily in the ipsilateral cerebellum and may be compensatory in nature.
Collapse
Affiliation(s)
- Naomi Hannaway
- Neurology Imaging Unit, Division of Neurology, Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom.
| | - Nicholas P Lao-Kaim
- Neurology Imaging Unit, Division of Neurology, Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom.
| | - Antonio Martín-Bastida
- Neurology Imaging Unit, Division of Neurology, Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom; Neurology Department, Clinica Universidad de Navarra, Pamplona, Navarra, 31008, Spain.
| | - Andreas-Antonios Roussakis
- Neurology Imaging Unit, Division of Neurology, Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom.
| | | | | | - Clare Loane
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, United Kingdom.
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom and WT-MRC Cambridge Stem Cell, Cambridge, United Kingdom.
| | - Paola Piccini
- Neurology Imaging Unit, Division of Neurology, Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom.
| |
Collapse
|
35
|
Tinaz S, Kamel S, Aravala SS, Sezgin M, Elfil M, Sinha R. Distinct neural circuits are associated with subclinical neuropsychiatric symptoms in Parkinson's disease. J Neurol Sci 2021; 423:117365. [PMID: 33636663 DOI: 10.1016/j.jns.2021.117365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parkinson's disease (PD) can present with neuropsychiatric symptoms (here, anxiety, depression, and apathy) at any stage of the disease. We investigated the neural correlates of subclinical neuropsychiatric symptoms in relation to motor and cognitive symptoms in a high-functioning PD cohort. METHODS Brain morphometry of the cognitively intact, early-stage (Hoehn & Yahr 2) PD group (n = 48) was compared to matched controls (n = 37). Whole-brain, pairwise, resting-state functional connectivity measures were correlated with neuropsychiatric symptom, motor exam, and global cognitive scores of the PD group. RESULTS Factor analysis of highly collinear anxiety, depression, and apathy scores revealed a single principal component (i.e., composite neuropsychiatric symptom score) explaining 71.6% of variance. There was no collinearity between the neuropsychiatric, motor, and cognitive scores. Compared to controls, PD group showed only subcortical changes including amygdala and nucleus accumbens atrophy, and greater pallidal volume. Reduced functional connectivity in the limbic cortical-striatal circuits and increased functional connectivity between the cerebellum and occipito-temporal regions were associated with a more impaired neuropsychiatric profile. This functional connectivity pattern was distinct from those associated with motor deficits and global cognitive functioning. The individual components of the neuropsychiatric symptoms also exhibited unique connectivity patterns. LIMITATIONS Patients were scanned in "on-medication" state only and a control group with similar neuropsychiatric symptoms was not included. CONCLUSION Abnormal functional connectivity of distinct neural circuits is present even at the subclinical stage of neuropsychiatric symptoms in PD. Neuropsychiatric phenotyping is important and may facilitate early interventions to "reorganize" these circuits and delay/prevent clinical symptom onset.
Collapse
Affiliation(s)
- Sule Tinaz
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA; Yale University School of Medicine, Clinical Neurosciences Imaging Center, 789 Howard Ave, New Haven, CT 06519, USA.
| | - Serageldin Kamel
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA
| | - Sai S Aravala
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA
| | - Mine Sezgin
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA; Istanbul University Faculty of Medicine, Department of Neurology, Millet Street, Fatih, Istanbul 34093, Turkey
| | - Mohamed Elfil
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA
| | - Rajita Sinha
- Yale School of Medicine, Yale Stress Center, 2 Church St South, Suite 209, New Haven, CT 06519, USA; Yale School of Medicine, Department of Psychiatry, 300 George St, New Haven, CT 06511, USA; Yale School of Medicine, Department of Neuroscience, 333 Cedar St, SHM-L-200, New Haven, CT 06510, USA
| |
Collapse
|