1
|
Voisard C, de l'Escalopier N, Ricard D, Oudre L. Automatic gait events detection with inertial measurement units: healthy subjects and moderate to severe impaired patients. J Neuroeng Rehabil 2024; 21:104. [PMID: 38890696 PMCID: PMC11184826 DOI: 10.1186/s12984-024-01405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events (GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present a method for improving GE detection from IMU recordings in such cases. METHODS We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detection techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to annotate this pattern from a model stride, in order to detect all GEs in the signal. RESULTS We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median absolute error of 8 ms (IQR [3-13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8-39] ms) and 26 ms (IQR [12-50] ms). CONCLUSIONS Our results are consistent with the state of the art for healthy subjects and demonstrate a good accuracy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used to ensure its reliability.
Collapse
Affiliation(s)
- Cyril Voisard
- Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, Gif-sur-Yvette, France.
- Service de Neurologie, Service de Santé des Armées, HIA Percy, Clamart, France.
| | - Nicolas de l'Escalopier
- Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, Paris, France
- Service de Chirurgie Orthopédique, Traumatologique et Réparatrice des Membres, Service de Santé des Armées, HIA Percy, Clamart, France
| | - Damien Ricard
- Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, Paris, France
- Service de Neurologie, Service de Santé des Armées, HIA Percy, Clamart, France
- Ecole du Val-de-Grâce, Service de Santé des Armées, Paris, France
| | - Laurent Oudre
- Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, Gif-sur-Yvette, France
| |
Collapse
|
2
|
MacLean MK, Rehman RZU, Kerse N, Taylor L, Rochester L, Del Din S. Walking Bout Detection for People Living in Long Residential Care: A Computationally Efficient Algorithm for a 3-Axis Accelerometer on the Lower Back. SENSORS (BASEL, SWITZERLAND) 2023; 23:8973. [PMID: 37960674 PMCID: PMC10647554 DOI: 10.3390/s23218973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Accurate and reliable measurement of real-world walking activity is clinically relevant, particularly for people with mobility difficulties. Insights on walking can help understand mobility function, disease progression, and fall risks. People living in long-term residential care environments have heterogeneous and often pathological walking patterns, making it difficult for conventional algorithms paired with wearable sensors to detect their walking activity. We designed two walking bout detection algorithms for people living in long-term residential care. Both algorithms used thresholds on the magnitude of acceleration from a 3-axis accelerometer on the lower back to classify data as "walking" or "non-walking". One algorithm had generic thresholds, whereas the other used personalized thresholds. To validate and evaluate the algorithms, we compared the classifications of walking/non-walking from our algorithms to the real-time research assistant annotated labels and the classification output from an algorithm validated on a healthy population. Both the generic and personalized algorithms had acceptable accuracy (0.83 and 0.82, respectively). The personalized algorithm showed the highest specificity (0.84) of all tested algorithms, meaning it was the best suited to determine input data for gait characteristic extraction. The developed algorithms were almost 60% quicker than the previously developed algorithms, suggesting they are adaptable for real-time processing.
Collapse
Affiliation(s)
- Mhairi K. MacLean
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, 7522 LW Enschede, The Netherlands
| | - Rana Zia Ur Rehman
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (L.R.)
| | - Ngaire Kerse
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (N.K.); (L.T.)
| | - Lynne Taylor
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (N.K.); (L.T.)
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (L.R.)
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Woelfle T, Bourguignon L, Lorscheider J, Kappos L, Naegelin Y, Jutzeler CR. Wearable Sensor Technologies to Assess Motor Functions in People With Multiple Sclerosis: Systematic Scoping Review and Perspective. J Med Internet Res 2023; 25:e44428. [PMID: 37498655 PMCID: PMC10415952 DOI: 10.2196/44428] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Wearable sensor technologies have the potential to improve monitoring in people with multiple sclerosis (MS) and inform timely disease management decisions. Evidence of the utility of wearable sensor technologies in people with MS is accumulating but is generally limited to specific subgroups of patients, clinical or laboratory settings, and functional domains. OBJECTIVE This review aims to provide a comprehensive overview of all studies that have used wearable sensors to assess, monitor, and quantify motor function in people with MS during daily activities or in a controlled laboratory setting and to shed light on the technological advances over the past decades. METHODS We systematically reviewed studies on wearable sensors to assess the motor performance of people with MS. We scanned PubMed, Scopus, Embase, and Web of Science databases until December 31, 2022, considering search terms "multiple sclerosis" and those associated with wearable technologies and included all studies assessing motor functions. The types of results from relevant studies were systematically mapped into 9 predefined categories (association with clinical scores or other measures; test-retest reliability; group differences, 3 types; responsiveness to change or intervention; and acceptability to study participants), and the reporting quality was determined through 9 questions. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. RESULTS Of the 1251 identified publications, 308 were included: 176 (57.1%) in a real-world context, 107 (34.7%) in a laboratory context, and 25 (8.1%) in a mixed context. Most publications studied physical activity (196/308, 63.6%), followed by gait (81/308, 26.3%), dexterity or tremor (38/308, 12.3%), and balance (34/308, 11%). In the laboratory setting, outcome measures included (in addition to clinical severity scores) 2- and 6-minute walking tests, timed 25-foot walking test, timed up and go, stair climbing, balance tests, and finger-to-nose test, among others. The most popular anatomical landmarks for wearable placement were the waist, wrist, and lower back. Triaxial accelerometers were most commonly used (229/308, 74.4%). A surge in the number of sensors embedded in smartphones and smartwatches has been observed. Overall, the reporting quality was good. CONCLUSIONS Continuous monitoring with wearable sensors could optimize the management of people with MS, but some hurdles still exist to full clinical adoption of digital monitoring. Despite a possible publication bias and vast heterogeneity in the outcomes reported, our review provides an overview of the current literature on wearable sensor technologies used for people with MS and highlights shortcomings, such as the lack of harmonization, transparency in reporting methods and results, and limited data availability for the research community. These limitations need to be addressed for the growing implementation of wearable sensor technologies in clinical routine and clinical trials, which is of utmost importance for further progress in clinical research and daily management of people with MS. TRIAL REGISTRATION PROSPERO CRD42021243249; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243249.
Collapse
Affiliation(s)
- Tim Woelfle
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Lucie Bourguignon
- Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Johannes Lorscheider
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Bargiotas I, Wang D, Mantilla J, Quijoux F, Moreau A, Vidal C, Barrois R, Nicolai A, Audiffren J, Labourdette C, Bertin-Hugaul F, Oudre L, Buffat S, Yelnik A, Ricard D, Vayatis N, Vidal PP. Preventing falls: the use of machine learning for the prediction of future falls in individuals without history of fall. J Neurol 2023; 270:618-631. [PMID: 35817988 PMCID: PMC9886639 DOI: 10.1007/s00415-022-11251-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023]
Abstract
Nowadays, it becomes of paramount societal importance to support many frail-prone groups in our society (elderly, patients with neurodegenerative diseases, etc.) to remain socially and physically active, maintain their quality of life, and avoid their loss of autonomy. Once older people enter the prefrail stage, they are already likely to experience falls whose consequences may accelerate the deterioration of their quality of life (injuries, fear of falling, reduction of physical activity). In that context, detecting frailty and high risk of fall at an early stage is the first line of defense against the detrimental consequences of fall. The second line of defense would be to develop original protocols to detect future fallers before any fall occur. This paper briefly summarizes the current advancements and perspectives that may arise from the combination of affordable and easy-to-use non-wearable systems (force platforms, 3D tracking motion systems), wearable systems (accelerometers, gyroscopes, inertial measurement units-IMUs) with appropriate machine learning analytics, as well as the efforts to address these challenges.
Collapse
Affiliation(s)
- Ioannis Bargiotas
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France. .,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
| | - Danping Wang
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Juan Mantilla
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Flavien Quijoux
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.,ORPEA Group, Puteaux, France
| | - Albane Moreau
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Catherine Vidal
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.,Service of Otorhinolaryngology (ENT), AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, 75013, France
| | - Remi Barrois
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Alice Nicolai
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Julien Audiffren
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Christophe Labourdette
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | | | - Laurent Oudre
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Stephane Buffat
- Laboratoire d'accidentologie de biomécanique et du comportement des conducteurs, GIE Psa Renault Groupes, Nanterre, France
| | - Alain Yelnik
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.,Service of Physical and Rehabilitation Medicine (PRM), AP- HP, GH St Louis, Lariboisière, F. Widal, Paris, 75010, France
| | - Damien Ricard
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.,Service of Neurology, AP-HP, Hôpital d'Instruction des Armées de Percy, Service de Santé des Armées, Clamart, 92140, France.,École d'application du Val-de-Grâce, Service de Santé des Armée, Paris, France
| | - Nicolas Vayatis
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France
| | - Pierre-Paul Vidal
- Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.,Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.,Institute of Information and Control, Hangzhou Dianzi University, Zhejiang, China
| |
Collapse
|
5
|
Wendt K, Trentzsch K, Haase R, Weidemann ML, Weidemann R, Aßmann U, Ziemssen T. Transparent Quality Optimization for Machine Learning-Based Regression in Neurology. J Pers Med 2022; 12:jpm12060908. [PMID: 35743693 PMCID: PMC9224715 DOI: 10.3390/jpm12060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
The clinical monitoring of walking generates enormous amounts of data that contain extremely valuable information. Therefore, machine learning (ML) has rapidly entered the research arena to analyze and make predictions from large heterogeneous datasets. Such data-driven ML-based applications for various domains become increasingly applicable, and thus their software qualities are taken into focus. This work provides a proof of concept for applying state-of-the-art ML technology to predict the distance travelled of the 2-min walk test, an important neurological measurement which is an indicator of walking endurance. A transparent lean approach was emphasized to optimize the results in an explainable way and simultaneously meet the specified software requirements for a generic approach. It is a general-purpose strategy as a fractional−factorial design benchmark combined with standardized quality metrics based on a minimal technology build and a resulting optimized software prototype. Based on 400 training and 100 validation data, the achieved prediction yielded a relative error of 6.1% distributed over multiple experiments with an optimized configuration. The Adadelta algorithm (LR=0.000814, fModelSpread=5, nModelDepth=6, nepoch=1000) performed as the best model, with 90% of the predictions with an absolute error of <15 m. Factors such as gender, age, disease duration, or use of walking aids showed no effect on the relative error. For multiple sclerosis patients with high walking impairment (EDSS Ambulation Score ≥6), the relative difference was significant (n=30; 24.0%; p<0.050). The results show that it is possible to create a transparently working ML prototype for a given medical use case while meeting certain software qualities.
Collapse
Affiliation(s)
- Karsten Wendt
- Software Technology Group, Technische Universität Dresden, 01187 Dresden, Germany; (K.W.); (U.A.)
| | - Katrin Trentzsch
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (K.T.); (R.H.); (M.L.W.); (R.W.)
| | - Rocco Haase
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (K.T.); (R.H.); (M.L.W.); (R.W.)
| | - Marie Luise Weidemann
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (K.T.); (R.H.); (M.L.W.); (R.W.)
| | - Robin Weidemann
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (K.T.); (R.H.); (M.L.W.); (R.W.)
| | - Uwe Aßmann
- Software Technology Group, Technische Universität Dresden, 01187 Dresden, Germany; (K.W.); (U.A.)
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (K.T.); (R.H.); (M.L.W.); (R.W.)
- Correspondence: ; Tel.: +49-351-458-4465
| |
Collapse
|
6
|
Bois A, Tervil B, Moreau A, Vienne-Jumeau A, Ricard D, Oudre L. A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis. PLoS One 2022; 17:e0268475. [PMID: 35560328 PMCID: PMC9106173 DOI: 10.1371/journal.pone.0268475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022] Open
Abstract
In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients’ follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.
Collapse
Affiliation(s)
- Alexandre Bois
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Université de Paris, CNRS, Centre Borelli, Paris, France
- * E-mail:
| | - Brian Tervil
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Université de Paris, CNRS, Centre Borelli, Paris, France
| | - Albane Moreau
- Service de Neurologie, Service de Santé des Armées, Hôpital d’Instruction des Armées Percy, Clamart, France
| | - Aliénor Vienne-Jumeau
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Université de Paris, CNRS, Centre Borelli, Paris, France
- Service de Neurologie, Service de Santé des Armées, Hôpital d’Instruction des Armées Percy, Clamart, France
| | - Damien Ricard
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Université de Paris, CNRS, Centre Borelli, Paris, France
- Service de Neurologie, Service de Santé des Armées, Hôpital d’Instruction des Armées Percy, Clamart, France
- Ecole du Val-de-Grâce, Ecole de Santé des Armées, Paris, France
| | - Laurent Oudre
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Université de Paris, CNRS, Centre Borelli, Paris, France
| |
Collapse
|
7
|
Roren A, Mazarguil A, Vaquero-Ramos D, Deloose JB, Vidal PP, Nguyen C, Rannou F, Wang D, Oudre L, Lefèvre-Colau MM. Assessing Smoothness of Arm Movements With Jerk: A Comparison of Laterality, Contraction Mode and Plane of Elevation. A Pilot Study. Front Bioeng Biotechnol 2022; 9:782740. [PMID: 35127666 PMCID: PMC8814310 DOI: 10.3389/fbioe.2021.782740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Measuring the quality of movement is a need and a challenge for clinicians. Jerk, defined as the quantity of acceleration variation, is a kinematic parameter used to assess the smoothness of movement. We aimed to assess and compare jerk metrics in asymptomatic participants for 3 important movement characteristics that are considered by clinicians during shoulder examination: dominant and non-dominant side, concentric and eccentric contraction mode, and arm elevation plane. In this pilot study, we measured jerk metrics by using Xsens® inertial measurement units strapped to the wrists for 11 different active arm movements (ascending and lowering phases): 3 bilateral maximal arm elevations in sagittal, scapular and frontal plane; 2 unilateral functional movements (hair combing and low back washing); and 2 unilateral maximal arm elevations in sagittal and scapular plane, performed with both arms alternately, right arm first. Each arm movement was repeated 3 times successively and the whole procedure was performed 3 times on different days. The recorded time series was segmented with semi-supervised algorithms. Comparisons involved the Wilcoxon signed rank test (p < 0.05) with Bonferroni correction. We included 30 right-handed asymptomatic individuals [17 men, mean (SD) age 31.9 (11.4) years]. Right jerk was significantly less than left jerk for bilateral arm elevations in all planes (all p < 0.05) and for functional movement (p < 0.05). Jerk was significantly reduced during the concentric (ascending) phase than eccentric (lowering) phase for bilateral and unilateral right and left arm elevations in all planes (all p < 0.05). Jerk during bilateral arm elevation was significantly reduced in the sagittal and scapular planes versus the frontal plane (both p < 0.01) and in the sagittal versus scapular plane (p < 0.05). Jerk during unilateral left arm elevation was significantly reduced in the sagittal versus scapular plane (p < 0.05). Jerk metrics did not differ between sagittal and scapular unilateral right arm elevation. Using inertial measurement units, jerk metrics can well describe differences between the dominant and non-dominant arm, concentric and eccentric modes and planes in arm elevation. Jerk metrics were reduced during arm movements performed with the dominant right arm during the concentric phase and in the sagittal plane. Using IMUs, jerk metrics are a promising method to assess the quality of basic shoulder movement.
Collapse
Affiliation(s)
- Alexandra Roren
- AP-HP, Groupe Hospitalier AP-HP. Centre-Université de Paris, Hôpital Cochin, Service de Rééducation et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Paris, France
- Faculté de Santé, UFR Médecine Paris Descartes, Université de Paris, Paris, France
- INSERM UMR-S 1153, Centre de Recherche Épidémiologie et Statistique Paris Sorbonne Cité, ECaMO Team, Paris, France
- Institut Fédératif de Recherche sur le Handicap, Paris, France
- *Correspondence: Alexandra Roren, ; Antoine Mazarguil,
| | - Antoine Mazarguil
- Centre Giovanni Alfonso Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, Gif-Sur-Yvette, France
- *Correspondence: Alexandra Roren, ; Antoine Mazarguil,
| | - Diego Vaquero-Ramos
- AP-HP, Groupe Hospitalier AP-HP. Centre-Université de Paris, Hôpital Cochin, Service de Rééducation et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Paris, France
| | - Jean-Baptiste Deloose
- AP-HP, Groupe Hospitalier AP-HP. Centre-Université de Paris, Hôpital Cochin, Service de Rééducation et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Paris, France
| | - Pierre-Paul Vidal
- Centre Giovanni Alfonso Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, Gif-Sur-Yvette, France
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
- Department of Neurosciences, Universitá Cattolica del SacroCuore, Milan, Italy
| | - Christelle Nguyen
- AP-HP, Groupe Hospitalier AP-HP. Centre-Université de Paris, Hôpital Cochin, Service de Rééducation et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Paris, France
- Faculté de Santé, UFR Médecine Paris Descartes, Université de Paris, Paris, France
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs (T3S), Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, Paris, France
| | - François Rannou
- AP-HP, Groupe Hospitalier AP-HP. Centre-Université de Paris, Hôpital Cochin, Service de Rééducation et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Paris, France
- Faculté de Santé, UFR Médecine Paris Descartes, Université de Paris, Paris, France
- Institut Fédératif de Recherche sur le Handicap, Paris, France
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs (T3S), Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, Paris, France
| | - Danping Wang
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
- Plateforme Sensorimotricité, BioMedTech Facilities INSERM US36-CNRS UMS2009-Université de Paris, Paris, France
| | - Laurent Oudre
- Centre Giovanni Alfonso Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, Gif-Sur-Yvette, France
| | - Marie-Martine Lefèvre-Colau
- AP-HP, Groupe Hospitalier AP-HP. Centre-Université de Paris, Hôpital Cochin, Service de Rééducation et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Paris, France
- Faculté de Santé, UFR Médecine Paris Descartes, Université de Paris, Paris, France
- INSERM UMR-S 1153, Centre de Recherche Épidémiologie et Statistique Paris Sorbonne Cité, ECaMO Team, Paris, France
- Institut Fédératif de Recherche sur le Handicap, Paris, France
| |
Collapse
|
8
|
Automated Analysis of the Two-Minute Walk Test in Clinical Practice Using Accelerometer Data. Brain Sci 2021; 11:brainsci11111507. [PMID: 34827506 PMCID: PMC8615930 DOI: 10.3390/brainsci11111507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
One of the core problems for people with multiple sclerosis (pwMS) is the impairment of their ability to walk, which can be severely restrictive in everyday life. Therefore, monitoring of ambulatory function is of great importance to be able to effectively counteract disease progression. An extensive gait analysis, such as the Dresden protocol for multidimensional walking assessment, covers several facets of walking impairment including a 2-min walk test, in which the distance taken by the patient in two minutes is measured by an odometer. Using this approach, it is questionable how precise the measuring methods are at recording the distance traveled. In this project, we investigate whether the current measurement can be replaced by a digital measurement method based on accelerometers (six Opal sensors from the Mobility Lab system) that are attached to the patient’s body. We developed two algorithms using these data and compared the validity of these approaches using the results from 2-min walk tests from 562 pwMS that were collected with a gold-standard odometer. In 48.4% of pwMS, we detected an average relative measurement error of less than 5%, while results from 25.8% of the pwMS showed a relative measurement error of up to 10%. The algorithm had difficulties correctly calculating the walking distances in another 25.8% of pwMS; these results showed a measurement error of more than 20%. A main reason for this moderate performance was the variety of pathologically altered gait patterns in pwMS that may complicate the step detection. Overall, both algorithms achieved favorable levels of agreement (r = 0.884 and r = 0.980) with the odometer. Finally, we present suggestions for improvement of the measurement system to be implemented in the future.
Collapse
|
9
|
Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson's disease patients. J Neuroeng Rehabil 2021; 18:93. [PMID: 34082762 PMCID: PMC8173987 DOI: 10.1186/s12984-021-00883-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background To objectively assess a patient’s gait, a robust identification of stride borders is one of the first steps in inertial sensor-based mobile gait analysis pipelines. While many different methods for stride segmentation have been presented in the literature, an out-of-lab evaluation of respective algorithms on free-living gait is still missing. Method To address this issue, we present a comprehensive free-living evaluation dataset, including 146.574 semi-automatic labeled strides of 28 Parkinson’s Disease patients. This dataset was used to evaluate the segmentation performance of a new Hidden Markov Model (HMM) based stride segmentation approach compared to an available dynamic time warping (DTW) based method. Results The proposed HMM achieved a mean F1-score of 92.1% and outperformed the DTW approach significantly. Further analysis revealed a dependency of segmentation performance to the number of strides within respective walking bouts. Shorter bouts (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$< 30$$\end{document}<30 strides) resulted in worse performance, which could be related to more heterogeneous gait and an increased diversity of different stride types in short free-living walking bouts. In contrast, the HMM reached F1-scores of more than 96.2% for longer bouts (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$> 50$$\end{document}>50 strides). Furthermore, we showed that an HMM, which was trained on at-lab data only, could be transferred to a free-living context with a negligible decrease in performance. Conclusion The generalizability of the proposed HMM is a promising feature, as fully labeled free-living training data might not be available for many applications. To the best of our knowledge, this is the first evaluation of stride segmentation performance on a large scale free-living dataset. Our proposed HMM-based approach was able to address the increased complexity of free-living gait data, and thus will help to enable a robust assessment of stride parameters in future free-living gait analysis applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00883-7.
Collapse
|
10
|
Abstract
Even for a stereotyped task, sensorimotor behavior is generally variable due to noise, redundancy, adaptability, learning or plasticity. The sources and significance of different kinds of behavioral variability have attracted considerable attention in recent years. However, the idea that part of this variability depends on unique individual strategies has been explored to a lesser extent. In particular, the notion of style recurs infrequently in the literature on sensorimotor behavior. In general use, style refers to a distinctive manner or custom of behaving oneself or of doing something, especially one that is typical of a person, group of people, place, context, or period. The application of the term to the domain of perceptual and motor phenomenology opens new perspectives on the nature of behavioral variability, perspectives that are complementary to those typically considered in the studies of sensorimotor variability. In particular, the concept of style may help toward the development of personalised physiology and medicine by providing markers of individual behaviour and response to different stimuli or treatments. Here, we cover some potential applications of the concept of perceptual-motor style to different areas of neuroscience, both in the healthy and the diseased. We prefer to be as general as possible in the types of applications we consider, even at the expense of running the risk of encompassing loosely related studies, given the relative novelty of the introduction of the term perceptual-motor style in neurosciences.
Collapse
Affiliation(s)
- Pierre-Paul Vidal
- CNRS, SSA, ENS Paris Saclay, Université de Paris, Centre Borelli, 75005 Paris, France
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Francesco Lacquaniti
- Department of Systems Medicine, Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| |
Collapse
|
11
|
Rudisch J, Jöllenbeck T, Vogt L, Cordes T, Klotzbier TJ, Vogel O, Wollesen B. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture 2021; 85:55-64. [PMID: 33516094 DOI: 10.1016/j.gaitpost.2021.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Measuring gait function has become an essential tool in the assessment of mobility in aging populations for both, clinicians and researchers. A variety of systems exist that assess gait parameters such as gait cycle time, gait speed or duration of relative gait phases. Due to different measurement principles such as inertial or pressure sensors, accurate detection of spatiotemporal events may vary between systems. RESEARCH QUESTION To compare the absolute agreement and consistency in spatiotemporal gait parameters among five different clinical gait analysis systems using different sensor technologies. METHODS We compared two devices using inertial sensors (GaitUp & Mobility Lab), two devices using pressure sensor systems (GAITRite & Zebris) as well as one optical system (OptoGait). Twelve older adults walked at self-selected speed through a walkway integrating all of the above systems. Basic spatiotemporal parameters (gait cycle time, cadence, gait speed and stride length) as well as measures of relative phase (stance phase, swing phase, double stance phase, single limb support) were extracted from all systems. We used Intraclass Correlation Coefficients as measures of agreement and consistency. RESULTS High agreement and consistency between all systems was found for basic spatiotemporal parameters, whereas parameters of relative phase showed poorer agreement and consistency. Overground measurement (GAITRite & OptoGait) showed generally higher agreement with each other as compared to inertial sensor-based systems. SIGNIFICANCE Our results indicate that accurate detection of both, the heel-strike and toe-off event are crucial for reliable results. Systematic errors in the detection of one or both events may only have a small impact on basic spatiotemporal outcomes as errors remain consistent from step to step. Relative phase parameters on the other hand may be affected to a much larger extent as these differences lead to a systematic increase or reduction of relative phase durations.
Collapse
Affiliation(s)
- Julian Rudisch
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Horstmarer Landweg 62B, 48149 Münster, Germany.
| | - Thomas Jöllenbeck
- Institute for Biomechanics, Clinic Lindenplatz, Weslarner Str. 29, 59505 Bad Sassendorf, Germany; Department of Exercise & Health, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.
| | - Lutz Vogt
- Department of Sports Medicine, Goethe University Frankfurt am Main, Ginnheimer Landstr. 39, 60487 Frankfurt, Germany.
| | - Thomas Cordes
- Department of Human Movement Science, University of Hamburg, Mollerstraße 10, 20148 Hamburg, Germany.
| | - Thomas Jürgen Klotzbier
- Department of Sport and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany.
| | - Oliver Vogel
- Department of Sports Medicine, Goethe University Frankfurt am Main, Ginnheimer Landstr. 39, 60487 Frankfurt, Germany.
| | - Bettina Wollesen
- Department of Human Movement Science, University of Hamburg, Mollerstraße 10, 20148 Hamburg, Germany; Biological Psychology and Neuroergonomics, TU Berlin, Fasanenstr. 1, 10623 Berlin, Germany.
| |
Collapse
|
12
|
Jung S, Michaud M, Oudre L, Dorveaux E, Gorintin L, Vayatis N, Ricard D. The Use of Inertial Measurement Units for the Study of Free Living Environment Activity Assessment: A Literature Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5625. [PMID: 33019633 PMCID: PMC7583905 DOI: 10.3390/s20195625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
This article presents an overview of fifty-eight articles dedicated to the evaluation of physical activity in free-living conditions using wearable motion sensors. This review provides a comprehensive summary of the technical aspects linked to sensors (types, number, body positions, and technical characteristics) as well as a deep discussion on the protocols implemented in free-living conditions (environment, duration, instructions, activities, and annotation). Finally, it presents a description and a comparison of the main algorithms and processing tools used for assessing physical activity from raw signals.
Collapse
Affiliation(s)
- Sylvain Jung
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France; (S.J.); (M.M.); (N.V.); (D.R.)
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
- Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France
- ENGIE Lab CRIGEN, F-93249 Stains, France; (E.D.); (L.G.)
| | - Mona Michaud
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France; (S.J.); (M.M.); (N.V.); (D.R.)
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
| | - Laurent Oudre
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France; (S.J.); (M.M.); (N.V.); (D.R.)
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
- Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France
| | - Eric Dorveaux
- ENGIE Lab CRIGEN, F-93249 Stains, France; (E.D.); (L.G.)
| | - Louis Gorintin
- ENGIE Lab CRIGEN, F-93249 Stains, France; (E.D.); (L.G.)
| | - Nicolas Vayatis
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France; (S.J.); (M.M.); (N.V.); (D.R.)
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
| | - Damien Ricard
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France; (S.J.); (M.M.); (N.V.); (D.R.)
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
- Service de Neurologie, Service de Santé des Armées, Hôpital d’Instruction des Armées Percy, F-92190 Clamart, France
- Ecole du Val-de-Grâce, Ecole de Santé des Armées, F-75005 Paris, France
| |
Collapse
|