1
|
Salabert AS, Payoux P. Movement Disorders and Its Variants. PET Clin 2025; 20:113-120. [PMID: 39477718 DOI: 10.1016/j.cpet.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Since the 2000s, Nuclear Medicine has primarily used SPECT with DaTSCAN and PET with [18F]-FDG to explore movement disorders. Recent advances in PET radiotracers, such as LBT 999 for dopamine transporters and tau tracers like flortaucipir for tauopathies, are enhancing diagnostic precision. Other PET tracers target neuroinflammation, synaptic density, cholinergic function, and adenosine A2A receptors. Novel tools like [18F]-ROStrace help detect oxidative stress in neurodegenerative disorders. These developments promise better patient management, reduced examination times, and improved diagnostic accuracy in the exploration of movement disorders pathologies.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France; Department of Radiopharmacy, University Hospital of Toulouse, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France; Department of Nuclear Medicine, University Hospital of Toulouse, Place du Dr Baylac, Toulouse Cedex 31059, France.
| |
Collapse
|
2
|
Leung IHK, Strudwick MW. A systematic review of the challenges, emerging solutions and applications, and future directions of PET/MRI in Parkinson's disease. EJNMMI REPORTS 2024; 8:3. [PMID: 38748251 PMCID: PMC10962627 DOI: 10.1186/s41824-024-00194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 05/19/2024]
Abstract
PET/MRI is a hybrid imaging modality that boasts the simultaneous acquisition of high-resolution anatomical data and metabolic information. Having these exceptional capabilities, it is often implicated in clinical research for diagnosing and grading, as well as tracking disease progression and response to interventions. Despite this, its low level of clinical widespread use is questioned. This is especially the case with Parkinson's disease (PD), the fastest progressively disabling and neurodegenerative cause of death. To optimise the clinical applicability of PET/MRI for diagnosing, differentiating, and tracking PD progression, the emerging novel uses, and current challenges must be identified. This systematic review aimed to present the specific challenges of PET/MRI use in PD. Further, this review aimed to highlight the possible resolution of these challenges, the emerging applications and future direction of PET/MRI use in PD. EBSCOHost (indexing CINAHL Plus, PsycINFO) Ovid (Medline, EMBASE) PubMed, Web of Science, and Scopus from 2006 (the year of first integrated PET/MRI hybrid system) to 30 September 2022 were used to search for relevant primary articles. A total of 933 studies were retrieved and following the screening procedure, 18 peer-reviewed articles were included in this review. This present study is of great clinical relevance and significance, as it informs the reasoning behind hindered widespread clinical use of PET/MRI for PD. Despite this, the emerging applications of image reconstruction developed by PET/MRI research data to the use of fully automated systems show promising and desirable utility. Furthermore, many of the current challenges and limitations can be resolved by using much larger-sampled and longitudinal studies. Meanwhile, the development of new fast-binding tracers that have specific affinity to PD pathological processes is warranted.
Collapse
|
3
|
Verger A, Grimaldi S, Ribeiro MJ, Frismand S, Guedj E. Single Photon Emission Computed Tomography/Positron Emission Tomography Molecular Imaging for Parkinsonism: A Fast-Developing Field. Ann Neurol 2021; 90:711-719. [PMID: 34338333 PMCID: PMC9291534 DOI: 10.1002/ana.26187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/26/2022]
Abstract
The early differential diagnosis of Parkinson disease and atypical parkinsonism is a major challenge. The use of single photon emission computed tomography (SPECT)/positron emission tomography (PET) molecular imaging to investigate parkinsonism is a fast‐developing field. Imaging biomarker research may potentially lead to more accurate disease detection, enabling earlier diagnosis and treatment. This review summarizes recent SPECT/PET advances in radiopharmaceuticals and imaging technologies/analyses that improve the diagnosis of neurodegenerative parkinsonism. We are currently witnessing a turning point in the field. Integrating molecular imaging as a diagnostic technique represents an opportunity to reassess the strategies for diagnosing neurodegenerative parkinsonism. ANN NEUROL 2021;90:711–719
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, Centre Hospitalier Régional Universitaire Nancy, Lorraine University, Nancy, France.,Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1254, Lorraine University, Nancy, France
| | - Stephan Grimaldi
- Department of Neurology and Movement Disorders, Public Assistance Hospitals of Marseille, Timone University Hospital, Marseille, France
| | - Maria-Joao Ribeiro
- Unité Mixte de Recherche 1253, iBrain, University of Tours, Institut National de la Santé et de la Recherche Médicale Centre d'Investigation Clinique 1415, Centre Hospitalier Régional Universitaire Tours, Tours, France
| | - Solène Frismand
- Department of Neurology, Centre Hospitalier Régional Universitaire Nancy, Lorraine University, Nancy, France
| | - Eric Guedj
- Aix-Marseille University, Centre National de Recherche Scientifique, Central School of Marseille, Unité Mixte de Recherche 7249, Fresnel Institute, Marseille, France.,Department of Nuclear Medicine, Public Assistance Hospitals of Marseille, Timone University Hospital, Marseille, France.,Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Cao S, Tang J, Liu C, Fang Y, Ji L, Xu Y, Chen Z. Synthesis and Biological Evaluation of [ 18F]FECNT-d 4 as a Novel PET Agent for Dopamine Transporter Imaging. Mol Imaging Biol 2021; 23:733-744. [PMID: 33851345 DOI: 10.1007/s11307-021-01603-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The dopamine transporter (DAT) is a marker of the occurrence and development of Parkinson's disease (PD) and other diseases with nigrostriatal degeneration. 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl)nortropane ([18F]FECNT), an 18F-labelled tropane derivative, was reported to be a useful positron-emitting probe for DAT. However, the rapid formation of brain-penetrating radioactive metabolites is an impediment to the proper quantitation of DAT in PET studies with [18F]FECNT. Deuterium-substituted analogues have presented better in vivo stability to reduce metabolites. This study aimed to synthesize a deuterium-substituted DAT radiotracer, [18F]FECNT-d4, and to make a preliminary investigation of its properties as a DAT tracer in vivo. PROCEDURES The ligand [18F]FECNT-d4 was obtained by one-step radiolabelling reaction. The lipophilicity was measured by the shake-flask method. Binding properties of [18F]FECNT-d4 were estimated by in vitro binding assay, biodistribution, and microPET imaging in rats. In vivo stability of [18F]FECNT-d4 was estimated by radio-HPLC. RESULTS [18F]FECNT-d4 was synthesized at an average activity yield of 46 ± 17 % (n = 15) and the molar activity was 67 ± 12 GBq/μmol. The deuterated tracer showed suitable lipophilicity and the ability to penetrate the blood-brain barrier (brain uptake of 1.72 % ID at 5 min). [18F]FECNT-d4 displayed a high binding affinity for DAT comparable to that of [18F]FECNT in rat striatum homogenates. Biodistribution results in normal rats showed that [18F]FECNT-d4 exhibited a higher ratio of the target to non-target (striatum/cerebellum) at 15 min post administration (5.00 ± 0.44 vs 3.84 ± 0.24 for [18F]FECNT-d4 vs [18F]FECNT). MicroPET imaging studies of [18F]FECNT-d4 in normal rats showed that the ligand selectively localized to DAT-rich striatal regions and the accumulation could be blocked with DAT inhibitor. Furthermore, in the unilateral PD model rat, a significant reduction of the signal was found in the lesioned side relative to the unlesioned side. Striatal standardized uptake value of [18F]FECNT-d4 remained ~4.02 in the striatum between 5 and 20 min, whereas that of [18F]FECNT fell rapidly from 4.11 to 2.95. Radio-HPLC analysis of the plasma demonstrated better in vivo stability of [18F]FECNT-d4 than [18F]FECNT. CONCLUSION The deuterated compound [18F]FECNT-d4 may serve as a promising PET imaging agent to assess DAT-related disorders.
Collapse
Affiliation(s)
- Shanshan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Linyang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yingjiao Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China. .,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
5
|
Vala C, Mothes C, Chicheri G, Magadur P, Viot G, Deloye JB, Maia S, Bouvet Y, Dupont AC, Arlicot N, Guilloteau D, Emond P, Vercouillie J. Fully automated radiosynthesis of [ 18F]LBT999 on TRACERlab FX FN and AllinOne modules, a PET radiopharmaceutical for imaging the dopamine transporter in human brain. EJNMMI Radiopharm Chem 2020; 5:26. [PMID: 33196944 PMCID: PMC7669936 DOI: 10.1186/s41181-020-00105-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3β-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for the in vivo neuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 was produced on a TRACERlab FXFN for the Phase I study but for Phase III and a potent industrial production transfer, production was also implemented on an AllinOne (AIO) system requiring a single use cassette. Both production methods are reported herein. Results Automation of [18F]LBT999 radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n = 16), with a radiochemical purity higher than 99% and a molar activity of 158 GBq/μmol at the end of synthesis. The transfer to the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n = 5), with a radiochemical purity better than 98% and a molar activity above 154 GBq/μmol on average at the end of synthesis. Quality controls of both methods met the specification for clinical application. Conclusion Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time. The developments made on AIO, such as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements, make it an optimal approach for the potent industrial production of [18F]LBT999 and future wider use.
Collapse
Affiliation(s)
- Christine Vala
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | - Céline Mothes
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | - Gabrielle Chicheri
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | - Pauline Magadur
- Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | | | - Jean-Bernard Deloye
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | - Serge Maia
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Yann Bouvet
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France
| | - Anne-Claire Dupont
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Nicolas Arlicot
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Denis Guilloteau
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Patrick Emond
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Johnny Vercouillie
- CERRP, 37100, Tours, France. .,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France. .,INSERM CIC 1415, University Hospital, 37000, Tours, France.
| |
Collapse
|