1
|
Ruksakulpiwat S, Zhou W, Phianhasin L, Benjasirisan C, Su T, Aldossary HM, Kudlowitz A, Challa AK, Li J, Praditukrit K. A Systematic Review and Meta-Analysis Assessing the Accuracy of Blood Biomarkers for the Diagnosis of Ischemic Stroke in Adult and Elderly Populations. eNeuro 2024; 11:ENEURO.0302-24.2024. [PMID: 39528275 PMCID: PMC11575121 DOI: 10.1523/eneuro.0302-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to elucidate the methodology and compare the accuracy of different blood biomarkers for diagnosing ischemic stroke (IS). We reviewed 29 articles retrieved from PubMed, MEDLINE, Web of Science, and CINAHL Plus with Full Text. Among these, 23 articles involving 3,494 participants were suitable for meta-analysis. The pooled area under the curve (AUC) of all studies for meta-analysis was 0.89. The pooled sensitivity and specificity were 0.76 (0.74-0.78) and 0.84 (0.83-0.86), respectively. Blood biomarkers from noninpatient settings demonstrated better diagnostic performance than those in inpatient settings (AUC 0.91 vs 0.88). Smaller sample sizes (<100) showed better performance than larger ones (≥100; AUC 0.92 vs 0.86). Blood biomarkers from acute IS (AIS) patients showed higher diagnostic values than those from IS and other stroke types (AUC 0.91 vs 0.87). The diagnostic performance of multiple blood biomarkers was superior to that of a single biomarker (AUC 0.91 vs 0.88). The diagnostic value of blood biomarkers from Caucasians was higher than that from Asians and Africans (AUC 0.90 vs 0.89, 0.75). Blood biomarkers from those with comorbidities (AUC 0.92) showed a better diagnostic performance than those not reporting comorbidities (AUC 0.84). All the subgroups analyzed, including setting, sample size, target IS population, blood biomarker profiling, ethnicity, and comorbidities could lead to heterogeneity. Blood biomarkers have demonstrated sufficient diagnostic accuracy for diagnosing IS and hold promise for integration into routine clinical practice. However, further research is recommended to refine the optimal model for utilizing blood biomarkers in IS diagnosis.
Collapse
Affiliation(s)
- Suebsarn Ruksakulpiwat
- Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand
| | - Wendie Zhou
- School of Nursing, Peking University, Beijing 100191, China
| | - Lalipat Phianhasin
- Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand
| | - Chitchanok Benjasirisan
- Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand
| | - Tingyu Su
- The Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
| | - Heba M Aldossary
- Department of Nursing, Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Aaron Kudlowitz
- The College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Abhilash K Challa
- Rocky Vista University College of Osteopathic Medicine, Ivins, Utah 84738
| | - Jingshu Li
- Hemodialysis Center, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Kulsatree Praditukrit
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| |
Collapse
|
2
|
Burla B, Oh J, Nowak A, Piraud N, Meyer E, Mei D, Bendt AK, Studt JD, Frey BM, Torta F, Wenk MR, Krayenbuehl PA. Plasma and platelet lipidome changes in Fabry disease. Clin Chim Acta 2024; 562:119833. [PMID: 38955246 DOI: 10.1016/j.cca.2024.119833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by the progressive accumulation of globotriaosylceramide (Gb3) leading to systemic manifestations such as chronic kidney disease, cardiomyopathy, and stroke. There is still a need for novel markers for improved FD screening and prognosis. Moreover, the pathological mechanisms in FD, which also include systemic inflammation and fibrosis, are not yet fully understood. METHODS Plasma and platelets were obtained from 11 ERT (enzyme-replacement therapy)-treated symptomatic, 4 asymptomatic FD patients, and 13 healthy participants. A comprehensive targeted lipidomics analysis was conducted quantitating more than 550 lipid species. RESULTS Sphingadiene (18:2;O2)-containing sphingolipid species, including Gb3 and galabiosylceramide (Ga2), were significantly increased in FD patients. Plasma levels of lyso-dihexosylceramides, sphingoid base 1-phosphates (S1P), and GM3 ganglioside were also altered in FD patients, as well as specific plasma ceramide ratios used in cardiovascular disease risk prediction. Gb3 did not increase in patients' platelets but displayed a high inter-individual variability in patients and healthy participants. Platelets accumulated, however, lyso-Gb3, acylcarnitines, C16:0-sphingolipids, and S1P. CONCLUSIONS This study identified lipidome changes in plasma and platelets from FD patients, a possible involvement of platelets in FD, and potential new markers for screening and monitoring of this disease.
Collapse
Affiliation(s)
- Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore.
| | - Jeongah Oh
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| | - Albina Nowak
- Department of Internal Medicine, Psychiatric University Clinic Zurich, Switzerland; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Switzerland.
| | | | - Eduardo Meyer
- Swiss Red Cross (SRC), Zurich-Schlieren, Switzerland
| | - Ding Mei
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Jan-Dirk Studt
- Division of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Beat M Frey
- Swiss Red Cross (SRC), Zurich-Schlieren, Switzerland
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Pierre-Alexandre Krayenbuehl
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Switzerland; General Practice Brauereistrasse, Uster-Zurich, Switzerland.
| |
Collapse
|
3
|
Matuskova H, Porschen LT, Matthes F, Lindgren AG, Petzold GC, Meissner A. Spatiotemporal sphingosine-1-phosphate receptor 3 expression within the cerebral vasculature after ischemic stroke. iScience 2024; 27:110031. [PMID: 38868192 PMCID: PMC11167442 DOI: 10.1016/j.isci.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Sphingosine-1-phosphate receptors (S1PRs) are promising therapeutic targets in cardiovascular disease, including ischemic stroke. However, important spatiotemporal information for alterations of S1PR expression is lacking. Here, we investigated the role of S1PR3 in ischemic stroke in rodent models and patient samples. We show that S1PR3 is acutely upregulated in perilesional reactive astrocytes after stroke, and that stroke volume and behavioral deficits are improved in mice lacking S1PR3. Further, we find that administration of an S1PR3 antagonist at 4-h post-stroke, but not at later timepoints, improves stroke outcome. Lastly, we observed higher plasma S1PR3 concentrations in experimental stroke and in patients with ischemic stroke. Together, our results establish S1PR3 as a potential drug target and biomarker in ischemic stroke.
Collapse
Affiliation(s)
- Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Lisa T. Porschen
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Frank Matthes
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Arne G. Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Gabor C. Petzold
- Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
4
|
Wang Z, Xu J, Zou S, Chen Z, Dong S, Wang K. Prognostic significance of plasma S1P in acute intracerebral hemorrhage: A prospective cohort study. Clin Chim Acta 2023; 551:117585. [PMID: 37813327 DOI: 10.1016/j.cca.2023.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Sphingosine-1-phosphate (S1P) may regulate neuroinflammatory immunity and blood-brain barrier integrity. This study was designed to assess the prognostic role of plasma S1P in intracerebral hemorrhage (ICH). METHODS In this prospective cohort study, plasma S1P levels were measured in 51 controls, at admission in 114 ICH patients and at days 1, 3, 5 and 7 in 51 of all patients. Univariate analysis and multivariate analysis were sequentially used to investigate severity correlation and prognosis association. RESULTS Plasma S1P levels were significantly elevated at admission, peaked at day 5, and declined at day 7, which were significantly higher during 7 days than those of controls (all P < 0.001). Areas under receiver operating characteristic curve (AUCs) of plasma S1P levels insignificant differed among all time points (all P > 0.05). Admission plasma S1P levels, in close correlation with National Institutes of Health Stroke Scale (NIHSS) scores [β, 7.661; 95 % confidence interval (CI), 4.893-10.399; P < 0.001] and hematoma volume (β, 1.285; 95 % CI, 0.348-2.230; P < 0.001), independently predicted 3-month poor prognosis (modified Rankin Scale scores of 3-6) (odds ratio, 3.184; 95 % CI, 1.057-9.597; P = 0.040). Admission plasma S1P levels had AUC of 0.799 (95 % CI, 0.713-0.868) for prognosis prediction. The levels > 240.4 ng/ml distinguished risk of poor prognosis with the maximum Youden index of 0.518. Prediction model integrating NIHSS scores, hematoma volume and admission plasma S1P levels had substantially higher prognostic predictive ability than NIHSS scores (P = 0.023), but not than hematoma volume (P = 0.061). CONCLUSION There is a significant elevation of plasma S1P levels during early period after ICH, which were independently related to severity and poor prognosis. Thus, plasma S1P may be a potential prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Jian Xu
- Graduate School, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shengdong Zou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Ziyin Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shuangyong Dong
- Emergency Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou 310006, China
| | - Keyi Wang
- Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou 310006, China.
| |
Collapse
|
5
|
Cheng X, Ye J, Zhang X, Meng K. Longitudinal Variations of CDC42 in Patients With Acute Ischemic Stroke During 3-Year Period: Correlation With CD4 + T Cells, Disease Severity, and Prognosis. Front Neurol 2022; 13:848933. [PMID: 35547377 PMCID: PMC9081787 DOI: 10.3389/fneur.2022.848933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Cell division cycle 42 (CDC42) modulates CD4+ T-cell differentiation, blood lipids, and neuronal apoptosis and is involved in the pathogenesis of acute ischemic stroke (AIS); however, the clinical role of CDC42 in AIS remains unanswered. This study aimed to evaluate the expression of CDC42 in a 3-year follow-up and its correlation with disease severity, T helper (Th)1/2/17 cells, and the prognosis in patients with AIS. Methods Blood CDC42 was detected in 143 patients with AIS at multiple time points during the 3-year follow-up period and in 70 controls at admission by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, blood Th1, Th2, and Th17 cells and their secreted cytokines (interferon-γ (IFN-γ), interleukin-4 (IL-4), and interleukin-17A (IL-17A)) in patients with AIS were detected by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Results Compared with controls (p < 0.001), CDC42 was reduced in patients with AIS. CDC42 was negatively correlated with the National Institutes of Health Stroke Scale (NIHSS) score (p < 0.001), whereas, in patients with AIS (all p < 0.050), it was positively associated with Th2 cells and IL-4 but negatively correlated with Th17 cells and IL-17A. CDC42 was decreased from admission to 3 days and gradually increased from 3 days to 3 years in patients with AIS (P<0.001). In a 3-year follow-up, 24 patients with AIS recurred and 8 patients died. On the 3rd day, 7th day, 1st month, 3rd month, 6th month, 1st year, 2nd year, and 3rd year, CDC42 was decreased in recurrent patients than that in non-recurrent patients (all p < 0.050). CDC42 at 7 days (p = 0.033) and 3 months (p = 0.023) was declined in reported deceased patients than in survived patients. Conclusion CDC42 is used as a biomarker to constantly monitor disease progression and recurrence risk of patients with AIS.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jianxin Ye
- Department of Neurology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, China
| | - Xiaolei Zhang
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Meng
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
7
|
Uhl FE, Vanherle L, Matthes F, Meissner A. Therapeutic CFTR Correction Normalizes Systemic and Lung-Specific S1P Level Alterations Associated with Heart Failure. Int J Mol Sci 2022; 23:866. [PMID: 35055052 PMCID: PMC8777932 DOI: 10.3390/ijms23020866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is among the main causes of death worldwide. Alterations of sphingosine-1-phosphate (S1P) signaling have been linked to HF as well as to target organ damage that is often associated with HF. S1P's availability is controlled by the cystic fibrosis transmembrane regulator (CFTR), which acts as a critical bottleneck for intracellular S1P degradation. HF induces CFTR downregulation in cells, tissues and organs, including the lung. Whether CFTR alterations during HF also affect systemic and tissue-specific S1P concentrations has not been investigated. Here, we set out to study the relationship between S1P and CFTR expression in the HF lung. Mice with HF, induced by myocardial infarction, were treated with the CFTR corrector compound C18 starting ten weeks post-myocardial infarction for two consecutive weeks. CFTR expression, S1P concentrations, and immune cell frequencies were determined in vehicle- and C18-treated HF mice and sham controls using Western blotting, flow cytometry, mass spectrometry, and qPCR. HF led to decreased pulmonary CFTR expression, which was accompanied by elevated S1P concentrations and a pro-inflammatory state in the lungs. Systemically, HF associated with higher S1P plasma levels compared to sham-operated controls and presented with higher S1P receptor 1-positive immune cells in the spleen. CFTR correction with C18 attenuated the HF-associated alterations in pulmonary CFTR expression and, hence, led to lower pulmonary S1P levels, which was accompanied by reduced lung inflammation. Collectively, these data suggest an important role for the CFTR-S1P axis in HF-mediated systemic and pulmonary inflammation.
Collapse
Affiliation(s)
- Franziska E. Uhl
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Frank Matthes
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
8
|
Liu H, Jackson ML, Goudswaard LJ, Moore SF, Hutchinson JL, Hers I. Sphingosine-1-phosphate modulates PAR1-mediated human platelet activation in a concentration-dependent biphasic manner. Sci Rep 2021; 11:15308. [PMID: 34321503 PMCID: PMC8319165 DOI: 10.1038/s41598-021-94052-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive signalling sphingolipid that is increased in diseases such as obesity and diabetes. S1P can modulate platelet function, however the direction of effect and S1P receptors (S1PRs) involved are controversial. Here we describe the role of S1P in regulating human platelet function and identify the receptor subtypes responsible for S1P priming. Human platelets were treated with protease-activated receptor 1 (PAR-1)-activating peptide in the presence or absence of S1P, S1PR agonists or antagonists, and sphingosine kinases inhibitors. S1P alone did not induce platelet aggregation but at low concentrations S1P enhanced PAR1-mediated platelet responses, whereas PAR1 responses were inhibited by high concentrations of S1P. This biphasic effect was mimicked by pan-S1PR agonists. Specific agonists revealed that S1PR1 receptor activation has a positive priming effect, S1PR2 and S1PR3 have no effect on platelet function, whereas S1PR4 and S1PR5 receptor activation have an inhibitory effect on PAR-1 mediated platelet function. Although platelets express both sphingosine kinase 1/2, enzymes which phosphorylate sphingosine to produce S1P, only dual and SphK2 inhibition reduced platelet function. These results support a role for SphK2-mediated S1P generation in concentration-dependent positive and negative priming of platelet function, through S1PR1 and S1PR4/5 receptors, respectively.
Collapse
Affiliation(s)
- Haonan Liu
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Molly L Jackson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
- Population Health Sciences, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK
| | - Samantha F Moore
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
9
|
Lu S, She M, Zeng Q, Yi G, Zhang J. Sphingosine 1-phosphate and its receptors in ischemia. Clin Chim Acta 2021; 521:25-33. [PMID: 34153277 DOI: 10.1016/j.cca.2021.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolite of sphingolipids, is mainly derived from red blood cells (RBCs), platelets and endothelial cells (ECs). It plays important roles in regulating cell survival, vascular integrity and inflammatory responses through its receptors. S1P receptors (S1PRs), including 5 subtypes (S1PR1-5), are G protein-coupled receptors and have been proved to mediate various and complex roles of S1P in atherosclerosis, myocardial infarction (MI) and ischemic stroke by regulating endothelial function and inflammatory response as well as immune cell behavior. This review emphasizes the functions of S1PRs in atherosclerosis and ischemic diseases such as MI and ischemic stroke, enabling mechanistic studies and new S1PRs targeted therapies in atherosclerosis and ischemia in the future.
Collapse
Affiliation(s)
- Shishu Lu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Meihua She
- Hengyang Medical College, University of South China, Hengyang, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China.
| | - Qun Zeng
- Hengyang Medical College, University of South China, Hengyang, China
| | - Guanghui Yi
- Hengyang Medical College, University of South China, Hengyang, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Jiawei Zhang
- Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|