1
|
Morkovina O, Manukyan P, Sharapkova A. Picture naming test through the prism of cognitive neuroscience and linguistics: adapting the test for cerebellar tumor survivors-or pouring new wine in old sacks? Front Psychol 2024; 15:1332391. [PMID: 38566942 PMCID: PMC10985186 DOI: 10.3389/fpsyg.2024.1332391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
A picture naming test (PNT) has long been regarded as an integral part of neuropsychological assessment. In current research and clinical practice, it serves a variety of purposes. PNTs are used to assess the severity of speech impairment in aphasia, monitor possible cognitive decline in aging patients with or without age-related neurodegenerative disorders, track language development in children and map eloquent brain areas to be spared during surgery. In research settings, picture naming tests provide an insight into the process of lexical retrieval in monolingual and bilingual speakers. However, while numerous advances have occurred in linguistics and neuroscience since the classic, most widespread PNTs were developed, few of them have found their way into test design. Consequently, despite the popularity of PNTs in clinical and research practice, their relevance and objectivity remain questionable. The present study provides an overview of literature where relevant criticisms and concerns have been expressed over the recent decades. It aims to determine whether there is a significant gap between conventional test design and the current understanding of the mechanisms underlying lexical retrieval by focusing on the parameters that have been experimentally proven to influence picture naming. We discuss here the implications of these findings for improving and facilitating test design within the picture naming paradigm. Subsequently, we highlight the importance of designing specialized tests with a particular target group in mind, so that test variables could be selected for cerebellar tumor survivors.
Collapse
Affiliation(s)
- Olga Morkovina
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
- Department of English, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Piruza Manukyan
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
| | - Anastasia Sharapkova
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
- Department of English Linguistics, Faculty of Philology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Mofatteh M, Mashayekhi MS, Arfaie S, Chen Y, Mirza AB, Fares J, Bandyopadhyay S, Henich E, Liao X, Bernstein M. Augmented and virtual reality usage in awake craniotomy: a systematic review. Neurosurg Rev 2022; 46:19. [PMID: 36529827 PMCID: PMC9760592 DOI: 10.1007/s10143-022-01929-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Augmented and virtual reality (AR, VR) are becoming promising tools in neurosurgery. AR and VR can reduce challenges associated with conventional approaches via the simulation and mimicry of specific environments of choice for surgeons. Awake craniotomy (AC) enables the resection of lesions from eloquent brain areas while monitoring higher cortical and subcortical functions. Evidence suggests that both surgeons and patients benefit from the various applications of AR and VR in AC. This paper investigates the application of AR and VR in AC and assesses its prospective utility in neurosurgery. A systematic review of the literature was performed using PubMed, Scopus, and Web of Science databases in accordance with the PRISMA guidelines. Our search results yielded 220 articles. A total of six articles consisting of 118 patients have been included in this review. VR was used in four papers, and the other two used AR. Tumour was the most common pathology in 108 patients, followed by vascular lesions in eight patients. VR was used for intraoperative mapping of language, vision, and social cognition, while AR was incorporated in preoperative training of white matter dissection and intraoperative visualisation and navigation. Overall, patients and surgeons were satisfied with the applications of AR and VR in their cases. AR and VR can be safely incorporated during AC to supplement, augment, or even replace conventional approaches in neurosurgery. Future investigations are required to assess the feasibility of AR and VR in various phases of AC.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yimin Chen
- Department of Neurology, Foshan Sanshui District People's Hospital, Foshan, China
| | | | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Feinberg School of Medicine, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Soham Bandyopadhyay
- Nuffield Department of Surgical Sciences, Oxford University Global Surgery Group, University of Oxford, Oxford, UK
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Edy Henich
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xuxing Liao
- Department of Neurosurgery, Foshan Sanshui District People's Hospital, Foshan, China
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, University Health Network, Toronto, Ontario, Canada
- Temmy Latner Center for Palliative Care, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|