1
|
Jerban S, Shaterian Mohammadi H, Athertya JS, Afsahi AM, Shojaeiadib N, Moazamian D, Ward SR, Woods G, Chung CB, Du J, Chang EY. Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling. NMR IN BIOMEDICINE 2024; 37:e5237. [PMID: 39155273 DOI: 10.1002/nbm.5237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | | | | | - Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
2
|
Chang EY, Suprana A, Tang Q, Cheng X, Fu E, Orozco E, Jerban S, Shah SB, Du J, Ma Y. Rotator cuff muscle fibrosis can be assessed using ultrashort echo time magnetization transfer MRI with fat suppression. NMR IN BIOMEDICINE 2024; 37:e5058. [PMID: 37828713 PMCID: PMC10841248 DOI: 10.1002/nbm.5058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Muscle degeneration following rotator cuff tendon tearing is characterized by fatty infiltration and fibrosis. While tools exist for the characterization of fat, the ability to noninvasively assess muscle fibrosis is limited. The purpose of this study was to evaluate the capability of quantitative ultrashort echo time T1 (UTE-T1) and UTE magnetization transfer (UTE-MT) mapping with and without fat suppression (FS) for the differentiation of injured and control rotator cuff muscles and for the detection of fibrosis. A rat model of chronic massive rotator cuff tearing (n = 12) was used with tenotomy of the right supraspinatus and infraspinatus tendons and silicone implants to prevent healing. Imaging was performed on a 3-T scanner, and UTE-T1 mapping with and without FS and UTE-MT with and without FS for macromolecular fraction (MMF) mapping was performed. At 20 weeks postinjury, T1 and MMF were measured in the supraspinatus and infraspinatus muscles of the injured and contralateral, internal control sides. Histology was performed and connective tissue fraction (CTF) was measured, defined as the area of collagen-rich extracellular matrix divided by the total muscle area. Paired t-tests and correlation analyses were performed. Significant differences between injured and control sides were found for CTF in the supraspinatus (mean ± SD, 14.5% ± 3.9% vs. 11.3% ± 3.7%, p = 0.01) and infraspinatus (17.0% ± 5.4% vs. 12.5% ± 4.6%, p < 0.01) muscles, as well as for MMF using UTE-MT FS in the supraspinatus (9.7% ± 0.3% vs. 9.5% ± 0.2%, p = 0.04) and infraspinatus (10.9% ± 0.8% vs. 10.1% ± 0.5%, p < 0.01) muscles. No significant differences between sides were evident for T1 without or with FS or for MMF using UTE-MT. Only MMF using UTE-MT FS was significantly correlated with CTF for both supraspinatus (r = 0.46, p = 0.03) and infraspinatus (r = 0.51, p = 0.01) muscles. Fibrosis occurs in rotator cuff muscle degeneration, and the UTE-MT FS technique may be helpful to evaluate the fibrosis component, independent from the fatty infiltration process.
Collapse
Affiliation(s)
- Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Arya Suprana
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Qingbo Tang
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Xin Cheng
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Eddie Fu
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Elisabeth Orozco
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
- Department of Orthopedic Surgery, University of California San Diego, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
- Department of Orthopedic Surgery, University of California San Diego, San Diego, California, USA
| | - Sameer B Shah
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
- Department of Orthopedic Surgery, University of California San Diego, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
3
|
Mooshage CM, Schimpfle L, Tsilingiris D, Kender Z, Aziz-Safaie T, Hohmann A, Szendroedi J, Nawroth P, Sturm V, Heiland S, Bendszus M, Kopf S, Jende JME, Kurz FT. Magnetization transfer ratio of the sciatic nerve differs between patients in type 1 and type 2 diabetes. Eur Radiol Exp 2024; 8:6. [PMID: 38191821 PMCID: PMC10774497 DOI: 10.1186/s41747-023-00405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Previous studies on magnetic resonance neurography (MRN) found different patterns of structural nerve damage in type 1 diabetes (T1D) and type 2 diabetes (T2D). Magnetization transfer ratio (MTR) is a quantitative technique to analyze the macromolecular tissue composition. We compared MTR values of the sciatic nerve in patients with T1D, T2D, and healthy controls (HC). METHODS 3-T MRN of the right sciatic nerve at thigh level was performed in 14 HC, 10 patients with T1D (3 with diabetic neuropathy), and 28 patients with T2D (10 with diabetic neuropathy). Results were subsequently correlated with clinical and electrophysiological data. RESULTS The sciatic nerve's MTR was lower in patients with T2D (0.211 ± 0.07, mean ± standard deviation) compared to patients with T1D (T1D 0.285 ± 0.03; p = 0.015) and HC (0.269 ± 0.05; p = 0.039). In patients with T1D, sciatic MTR correlated positively with tibial nerve conduction velocity (NCV; r = 0.71; p = 0.021) and negatively with hemoglobin A1c (r = - 0.63; p < 0.050). In patients with T2D, we found negative correlations of sciatic nerve's MTR peroneal NCV (r = - 0.44; p = 0.031) which remained significant after partial correlation analysis controlled for age and body mass index (r = 0.51; p = 0.016). CONCLUSIONS Lower MTR values of the sciatic nerve in T2D compared to T1D and HC and diametrical correlations of MTR values with NCV in T1D and T2D indicate that there are different macromolecular changes and pathophysiological pathways underlying the development of neuropathic nerve damage in T1D and T2D. TRIAL REGISTRATION https://classic. CLINICALTRIALS gov/ct2/show/NCT03022721 . 16 January 2017. RELEVANCE STATEMENT Magnetization transfer ratio imaging may serve as a non-invasive imaging method to monitor the diseases progress and to encode the pathophysiology of nerve damage in patients with type 1 and type 2 diabetes. KEY POINTS • Magnetization transfer imaging detects distinct macromolecular nerve lesion patterns in diabetes patients. • Magnetization transfer ratio was lower in type 2 diabetes compared to type 1 diabetes. • Different pathophysiological mechanisms drive nerve damage in type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Christoph M Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Dimitrios Tsilingiris
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Taraneh Aziz-Safaie
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Anja Hohmann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, associated partner in the DZD, Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Center, Munich, Neuherberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.
- German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
4
|
Jerban S, Ma Y, Tang Q, Fu E, Szeverenyi N, Jang H, Chung CB, Du J, Chang EY. Robust Assessment of Macromolecular Fraction (MMF) in Muscle with Differing Fat Fraction Using Ultrashort Echo Time (UTE) Magnetization Transfer Modeling with Measured T1. Diagnostics (Basel) 2023; 13:876. [PMID: 36900019 PMCID: PMC10001337 DOI: 10.3390/diagnostics13050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely regarded as the most comprehensive imaging modality to assess skeletal muscle quality and quantity. Magnetization transfer (MT) imaging can be used to estimate the fraction of water and macromolecular proton pools, with the latter including the myofibrillar proteins and collagen, which are related to the muscle quality and its ability to generate force. MT modeling combined with ultrashort echo time (UTE-MT modeling) may improve the evaluation of the myotendinous junction and regions with fibrotic tissues in the skeletal muscles, which possess short T2 values and higher bound-water concentration. The fat present in muscle has always been a source of concern in macromolecular fraction (MMF) calculation. This study aimed to investigate the impact of fat fraction (FF) on the estimated MMF in bovine skeletal muscle phantoms embedded in pure fat. MMF was calculated for several regions of interest (ROIs) with differing FFs using UTE-MT modeling with and without T1 measurement and B1 correction. Calculated MMF using measured T1 showed a robust trend, particularly with a negligible error (<3%) for FF < 20%. Around 5% MMF reduction occurred for FF > 30%. However, MMF estimation using a constant T1 was robust only for regions with FF < 10%. The MTR and T1 values were also robust for only FF < 10%. This study highlights the potential of the UTE-MT modeling with accurate T1 measurement for robust muscle assessment while remaining insensitive to fat infiltration up to moderate levels.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
- Department of Orthopedic Surgery, University of California, La Jolla, San Diego, CA 92093, USA
| | - Yajun Ma
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Qingbo Tang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Eddie Fu
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Nikolaus Szeverenyi
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Christine B. Chung
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| |
Collapse
|
5
|
Stephenson MC, Krishna L, Pannir Selvan RM, Tai YK, Kit Wong CJ, Yin JN, Toh SJ, Torta F, Triebl A, Fröhlich J, Beyer C, Li JZ, Tan SS, Wong CK, Chinnasamy D, Pakkiri LS, Lee Drum C, Wenk MR, Totman JJ, Franco-Obregón A. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized-controlled pilot trial. J Orthop Translat 2022; 35:99-112. [PMID: 36262374 PMCID: PMC9574347 DOI: 10.1016/j.jot.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium–mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 mT for 10 min) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi + PCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.
Collapse
Affiliation(s)
- Mary C. Stephenson
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Corresponding author. Centre for Translational MR Research, Yong Loo Lin School of Medicine, Tahir Foundation Building, 13-03, MD1, National University of Singapore, Singapore, 117549.
| | - Lingaraj Krishna
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Shi-Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Christian Beyer
- Centre Suisse d'électronique et de Microtechnique, CSEM SA, Neuchatel, Switzerland
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sara S. Tan
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Chun-Kit Wong
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duraimurugan Chinnasamy
- National University Hospital, Department of Rehabilitation Centre, National University Health System, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chester Lee Drum
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John J. Totman
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Academic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| |
Collapse
|