1
|
Tran P, Schneider N, Cho J, Parrish TB, Tate MC, Iorga M. Detection of face motor activation in the precentral gyrus with functional thermography following inconclusive direct electrical stimulation mapping: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24549. [PMID: 39556814 PMCID: PMC11579916 DOI: 10.3171/case24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND The leading method of identifying critical functional regions during brain tumor resection is direct electrical stimulation (DES). In awake craniotomy patients, DES employs electric current to induce functional responses or task inhibition. In contrast, thermography uses infrared imaging to detect regions of increased blood flow from patient tasks, inferring the location of functional activity similarly to blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). DES seldom produces no detectable response, but the case herein is an example featuring the subsequent use of thermography. OBSERVATIONS The authors present the case of a 40-year-old male in whom awake craniotomy DES for high-grade glioma re-resection produced no detectable response at the upper levels of tolerated current amplitude. Following inconclusive DES, infrared thermography was performed with a lip-pursing task, and face motor activation was thermally detected in regions corroborated by both preoperative BOLD fMRI and literature on BOLD fMRI face motor mapping. LESSONS The lack of a detectable DES response was attributed to significant peritumoral edema, as evidenced by preoperative fluid-attenuated inversion recovery MRI. Findings indicate that infrared thermography overcomes the limitations of DES in an extensive edema setting and that thermography offers a useful complement to standard cortical mapping protocols for resection planning. https://thejns.org/doi/10.3171/CASE24549.
Collapse
Affiliation(s)
- Phillip Tran
- Departments of Radiology, Northwestern University, Chicago, Illinois
| | - Nils Schneider
- Departments of Radiology, Northwestern University, Chicago, Illinois
| | - Jaden Cho
- Departments of Radiology, Northwestern University, Chicago, Illinois
| | - Todd B. Parrish
- Departments of Radiology, Northwestern University, Chicago, Illinois
- Departments of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Matthew C. Tate
- Departments of Neurosurgery, Northwestern Medicine, Chicago, Illinois
- Departments of Neurology, Northwestern Medicine, Chicago, Illinois
| | - Michael Iorga
- Departments of Radiology, Northwestern University, Chicago, Illinois
| |
Collapse
|
2
|
Paiva WS, Fonoff ET, dos Santos Silva RP, Schiavao L, Brunoni AR, de Almeida CC, Júnior CC. Preoperative Cortical Mapping for Brain Tumor Surgery Using Navigated Transcranial Stimulation: Analysis of Accuracy. Brain Sci 2024; 14:867. [PMID: 39335363 PMCID: PMC11430880 DOI: 10.3390/brainsci14090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) represents a distinctive technique for non-invasive brain stimulation. Recent advancements in image processing have enabled the enhancement of TMS by integrating magnetic resonance imaging (MRI) modalities with TMS via a neuronavigation system. The aim of this study is to assess the efficacy of navigated TMS for cortical mapping in comparison to surgical mapping using direct electrical stimulation (DES). This study involved 30 neurosurgical procedures for tumors located in or adjacent to the precentral gyrus. The DES points were compared with TMS responses based on the original distances of vectorial modules. There was a notable similarity in the points obtained from the two mapping methods. The distances between the geometric centers of TMS and DCS were 4.85 ± 1.89 mm. A strong correlation was identified between these vectorial points (r = 0.901, p < 0.001). The motor threshold in TMS was highest in the motor cortex adjacent to the tumor compared to the normal cortex (p < 0.001). Patients with deficits exhibited excellent accuracy in both methods. In view of this, TMS demonstrated reliable and precise application in brain mapping, which is a promising method for preoperative functional mapping in motor cortex tumor surgery.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - Erich Talamoni Fonoff
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | | | - Lucas Schiavao
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - André Russowsky Brunoni
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - César Cimonari de Almeida
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - Carlos Carlotti Júnior
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| |
Collapse
|
3
|
Akbar MN, Yarossi M, Rampersad S, Lockwood K, Masoomi A, Tunik E, Brooks D, Erdogmus D. M2M-InvNet: Human Motor Cortex Mapping From Multi-Muscle Response Using TMS and Generative 3D Convolutional Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1455-1465. [PMID: 38498738 PMCID: PMC11101138 DOI: 10.1109/tnsre.2024.3378102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transcranial magnetic stimulation (TMS) is often applied to the motor cortex to stimulate a collection of motor evoked potentials (MEPs) in groups of peripheral muscles. The causal interface between TMS and MEP is the selective activation of neurons in the motor cortex; moving around the TMS 'spot' over the motor cortex causes different MEP responses. A question of interest is whether a collection of MEP responses can be used to identify the stimulated locations on the cortex, which could potentially be used to then place the TMS coil to produce chosen sets of MEPs. In this work we leverage our previous report on a 3D convolutional neural network (CNN) architecture that predicted MEPs from the induced electric field, to tackle an inverse imaging task in which we start with the MEPs and estimate the stimulated regions on the motor cortex. We present and evaluate five different inverse imaging CNN architectures, both conventional and generative, in terms of several measures of reconstruction accuracy. We found that one architecture, which we propose as M2M-InvNet, consistently achieved the best performance.
Collapse
|
4
|
Bonosi L, Torrente A, Brighina F, Tito Petralia CC, Merlino P, Avallone C, Gulino V, Costanzo R, Brunasso L, Iacopino DG, Maugeri R. Corticocortical Evoked Potentials in Eloquent Brain Tumor Surgery. A Systematic Review. World Neurosurg 2024; 181:38-51. [PMID: 37832637 DOI: 10.1016/j.wneu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Eloquent brain tumor surgery involves the delicate task of resecting tumors located in regions of the brain responsible for critical functions, such as language, motor control, and sensory perception. Preserving these functions is of paramount importance to maintain the patient's quality of life. Corticocortical evoked potentials (CCEPs) have emerged as a valuable intraoperative monitoring technique that aids in identifying and preserving eloquent cortical areas during surgery. This systematic review aimed to assess the utility of CCEPs in eloquent brain tumor surgery and determine their effectiveness in improving patient outcomes. A comprehensive literature search was conducted using electronic databases, including PubMed/Medline and Scopus. The search strategy identified 11 relevant articles for detailed analysis. The findings of the included studies consistently demonstrated the potential of CCEPs in guiding surgical decision making, minimizing the risk of postoperative neurological deficits, and mapping functional connectivity during surgery. However, further research and standardization are needed to fully establish the clinical benefits and refine the implementation of CCEPs in routine neurosurgical practice.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cateno Concetto Tito Petralia
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Pietro Merlino
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Careggi University Hospital and University of Florence, Florence, Italy
| | - Chiara Avallone
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo Gulino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Riaz H, Uzair M, Arshad M, Hamza A, Bukhari N, Azam F, Bashir S. Navigated Transcranial Magnetic Stimulation (nTMS) based Preoperative Planning for Brain Tumor Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:883-893. [PMID: 37340739 DOI: 10.2174/1871527322666230619103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for analyzing the central and peripheral nervous system. TMS could be a powerful therapeutic technique for neurological disorders. TMS has also shown potential in treating various neurophysiological complications, such as depression, anxiety, and obsessive-compulsive disorders, without pain and analgesics. Despite advancements in diagnosis and treatment, there has been an increase in the prevalence of brain cancer globally. For surgical planning, mapping brain tumors has proven challenging, particularly those localized in expressive regions. Preoperative brain tumor mapping may lower the possibility of postoperative morbidity in surrounding areas. A navigated TMS (nTMS) uses magnetic resonance imaging (MRI) to enable precise mapping during navigated brain stimulation. The resulting magnetic impulses can be precisely applied to the target spot in the cortical region by employing nTMS. This review focuses on nTMS for preoperative planning for brain cancer. This study reviews several studies on TMS and its subtypes in treating cancer and surgical planning. nTMS gives wider and improved dimensions of preoperative planning of the motor-eloquent areas in brain tumor patients. nTMS also predicts postoperative neurological deficits, which might be helpful in counseling patients. nTMS have the potential for finding possible abnormalities in the motor cortex areas.
Collapse
Affiliation(s)
- Hammad Riaz
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Ali Hamza
- Brno University of Technology, Brno, Czech Republic
| | - Nedal Bukhari
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
- Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Azam
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Pullay Silven M, Di Giovanni G, Nicoletti GF, Iacopino DG. Letter to the Editor Regarding "Virtual Reality During Brain Mapping for Awake-Patient Brain Tumor Surgery: Proposed Tasks and Domains to Test". World Neurosurg 2024; 181:207-208. [PMID: 38229289 DOI: 10.1016/j.wneu.2023.08.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Manikon Pullay Silven
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Post Graduate Residency Program in Neurologic Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", School of Medicine, University of Palermo, Palermo, Italy.
| | | | | | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Post Graduate Residency Program in Neurologic Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Pullay Silven M, Nicoletti GF, Iacopino DG. Letter to the Editor Regarding "Changes of Resection Goal after Using 3-Dimensional Printing Brain Tumor Model for Presurgical Planning". World Neurosurg 2023; 180:254-255. [PMID: 38115386 DOI: 10.1016/j.wneu.2023.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Manikon Pullay Silven
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Post Graduate Residency Program in Neurologic Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", School of Medicine, University of Palermo, Sicily, Palermo, Italy.
| | | | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Post Graduate Residency Program in Neurologic Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone", School of Medicine, University of Palermo, Sicily, Palermo, Italy
| |
Collapse
|
8
|
Voets NL, Bartsch AJ, Plaha P. Functional MRI applications for intra-axial brain tumours: uses and nuances in surgical practise. Br J Neurosurg 2023; 37:1544-1559. [PMID: 36148501 DOI: 10.1080/02688697.2022.2123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- GenesisCare Ltd, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Neurosurgery, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Silven MP, Costanzo R, Nicoletti GF, Iacopino DG. Letter to the Editor Regarding "Augmented Reality in Transsphenoidal Surgery". World Neurosurg 2023; 180:250-251. [PMID: 38115384 DOI: 10.1016/j.wneu.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Manikon Pullay Silven
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy.
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | | | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Maas DA, Douw L. Multiscale network neuroscience in neuro-oncology: How tumors, brain networks, and behavior connect across scales. Neurooncol Pract 2023; 10:506-517. [PMID: 38026586 PMCID: PMC10666814 DOI: 10.1093/nop/npad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Network neuroscience refers to the investigation of brain networks across different spatial and temporal scales, and has become a leading framework to understand the biology and functioning of the brain. In neuro-oncology, the study of brain networks has revealed many insights into the structure and function of cells, circuits, and the entire brain, and their association with both functional status (e.g., cognition) and survival. This review connects network findings from different scales of investigation, with the combined aim of informing neuro-oncological healthcare professionals on this exciting new field and also delineating the promising avenues for future translational and clinical research that may allow for application of network methods in neuro-oncological care.
Collapse
Affiliation(s)
- Dorien A Maas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Linda Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Poullay Silven M, Nicoletti GF, Iacopino DG. Letter to the Editor Regarding "Social Media in Neurosurgery: A Systematic Review". World Neurosurg 2023; 179:254-255. [PMID: 38078397 DOI: 10.1016/j.wneu.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 12/18/2023]
Affiliation(s)
- Manikon Poullay Silven
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, School of Medicine, University of Palermo, Palermo, Italy.
| | | | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Shukla I, Modasia B, Chaurasia B. Acute disseminated encephalomyelitis and viral encephalitis: An unusual and misleading imaging. Clin Case Rep 2023; 11:e8004. [PMID: 37786457 PMCID: PMC10541567 DOI: 10.1002/ccr3.8004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Acute disseminated encephalomyelitis (ADEM) is a rare illness. It is characterized by different presentations like encephalopathy, seizures, hemiplegia, and visual symptoms. We present a patient who presented seizures and encephalopathy. Brain MRI showed symmetrical white and gray matter lesions. He was treated with acyclovir for viral encephalitis and given immunotherapy for ADEM. The radiological findings may be inconclusive in some cases, hence differential diagnosis of both viral encephalitis and ADEM needs to be considered. Early immunotherapy is required in such fulminant cases.
Collapse
|
13
|
D’Amico A, Furlanis GM, Baro V, Sartori L, Landi A, d’Avella D, Sala F, Denaro L. Thalamopeduncular Tumors in Pediatric Age: Advanced Preoperative Imaging to Define Safe Surgical Planning: A Multicentric Experience. J Clin Med 2023; 12:5521. [PMID: 37685588 PMCID: PMC10488778 DOI: 10.3390/jcm12175521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Background: Thalamopeduncular tumors are challenging lesions arising at the junction between the thalamus and the cerebral peduncle. They represent 1-5% of pediatric brain tumors, are mainly pilocytic astrocytoma and occur within the first two decades of life. To date, the optimal treatment remains unclear. Methods: We retrospectively reviewed pediatric patients who underwent surgery for thalamopeduncular tumors in the Academic Pediatric Neurosurgery Unit of Padova and Verona from 2005 to 2022. We collected information on age, sex, symptoms, preoperative and postoperative neuroradiological studies, histological specimens, surgical approaches, and follow-up. Results: We identified eight patients with a mean age of 9 years. All lesions were pilocytic astrocytoma. The main symptoms were spastic hemiparesis, cranial nerve palsy, headache, and ataxia. The corticospinal tract was studied in all patients using diffusion-tensor imaging brain MRI and in two patients using navigated transcranial magnetic stimulation. The transsylvian approach was the most frequently used. A gross total resection was achieved in two patients, a subtotal resection in five and a partial resection in one. In three patients, a second treatment was performed due to the regrowth of the tumor, performing an additional surgery in two cases and a second-look surgery followed by adjuvant therapy in one. After the surgery, four patients maintained stability in their postoperative neurological exam, two patients improved, and two worsened but in one of them, an improvement during recovery occurred. At the last follow-up available, three patients were disease-free, four had a stable tumor residual, and only one patient died from the progression of the disease. Conclusions: Advanced preoperative tools allow one to define a safe surgical strategy. Due to the indolent behavior of thalamopeduncular tumors, surgery should be encouraged.
Collapse
Affiliation(s)
- Alberto D’Amico
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Giulia Melinda Furlanis
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Luca Sartori
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Andrea Landi
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Domenico d’Avella
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurological and Movement Sciences, University of Verona, 37100 Verona, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35122 Padova, Italy
| |
Collapse
|
14
|
Vitulli F, Kalaitzoglou D, Soumpasis C, Díaz-Baamonde A, Mosquera JDS, Gullan R, Vergani F, Ashkan K, Bhangoo R, Mirallave-Pescador A, Lavrador JP. Cortical-Subcortical Functional Preservation and Rehabilitation in Neuro-Oncology: Tractography-MIPS-IONM-TMS Proof-of-Concept Study. J Pers Med 2023; 13:1278. [PMID: 37623528 PMCID: PMC10455135 DOI: 10.3390/jpm13081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Surgical management of deep-seated brain tumors requires precise functional navigation and minimally invasive surgery. Preoperative mapping using navigated transcranial magnetic stimulation (nTMS), intraoperative neurophysiological monitoring (IONM), and minimally invasive parafascicular surgery (MIPS) act together in a functional-sparing approach. nTMS also provides a rehabilitation tool to maximize functional recovery. This is a single-center retrospective proof-of-concept cohort study between January 2022 and June 2023 of patients admitted for surgery with motor eloquent deep-seated brain tumors. The study enrolled seven adult patients, five females and two males, with a mean age of 56.28 years old. The lesions were located in the cingulate gyrus (three patients), the central core (two patients), and the basal ganglia (two patients). All patients had preoperative motor deficits. The most common histological diagnosis was metastasis (five patients). The MIPS approach to the mid-cingulate lesions involved a trajectory through the fronto-aslant tract (FAT) and the fronto-striatal tract (FST). No positive nTMS motor responses were resected as part of the outer corridor for MIPS. Direct cortical stimulation produced stable motor-evoked potentials during the surgeries with no warning signs. Gross total resection (GTR) was achieved in three patients and near-total resection (NTR) in four patients. Post-operatively, all patients had a deterioration of motor function with no ischemia in the postoperative imaging (cavity-to-CST distance 0-4 mm). After nTMS with low-frequency stimulation in the contralateral motor cortex, six patients recovered to their preoperative functional status and one patient improved to a better functional condition. A combined Tractography-MIPS-IONM-TMS approach provides a successful functional-sparing approach to deep-seated motor eloquent tumors and a rehabilitation framework for functional recovery after surgery.
Collapse
Affiliation(s)
- Francesca Vitulli
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples, “Federico II”, Via S. Pansini, 80131 Naples, Italy
| | - Dimitrios Kalaitzoglou
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| | - Christos Soumpasis
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| | - Alba Díaz-Baamonde
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (A.D.-B.); (J.D.S.M.)
| | - José David Siado Mosquera
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (A.D.-B.); (J.D.S.M.)
| | - Richard Gullan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (A.D.-B.); (J.D.S.M.)
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; (F.V.); (C.S.); (R.G.); (F.V.); (K.A.); (R.B.); (A.M.-P.); (J.P.L.)
| |
Collapse
|
15
|
Abdala-Vargas NJ, Umana GE, Patiño-Gomez JG, Ordoñez-Rubiano E, Cifuentes-Lobelo HA, Palmisciano P, Ferini G, Viola A, Zagardo V, Casanova-Martínez D, Tomasi OS, Campero A, Baldoncini M. Standardization of Strategies to Perform a Parafascicular Tubular Approach for the Resection of Brain Tumors in Eloquent Areas. Brain Sci 2023; 13:brainsci13030498. [PMID: 36979308 PMCID: PMC10046766 DOI: 10.3390/brainsci13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Objective: The aim of this work is to define a methodological strategy for the minimally invasive tubular retractor (MITR) parafascicular transulcal approach (PTA) for the management of brain tumors sited in eloquent areas. Methods: An observational prospective study was designed to evaluate the benefits of PTA associated with MITRs, tractography and intraoperative cortical stimulation. They study was conducted from June 2018 to June 2021. Information regarding white matter tracts was processed, preventing a potential damage during the approach and/or resection. All patients older than 18 years who had a single brain tumor lesion were included in the study. Patients with a preoperative Karnofsky Performance Scale (KPS) score greater than 70% and a Glasgow Coma Scale (GCS) score > 14 points were included. Results: 72 patients were included in the study, the mean age was 49.6, the most affected gender was male, 12.5% presented aphasia, 11.1% presented paraphasia, 41.6% had motor deficit, 9.7% had an affection in the optic pathway, the most frequently affected region was the frontal lobe (26.3%), the most frequent lesions were high-grade gliomas (34.7%) and the measurement of the incisions was on average 5.58 cm. Of the patients, 94.4% underwent a total macroscopic resection and 90.2% did not present new postoperative neurological deficits. In all cases, a PTA was used. Conclusion: Tubular minimally invasive approaches (MIAs) allow one to perform maximal safe resection of brain tumors in eloquent areas, through small surgical corridors. Future comparative studies between traditional and minimally invasive techniques are required to further investigate the potential of these surgical nuances.
Collapse
Affiliation(s)
- Nadin J. Abdala-Vargas
- Neurosurgery Department, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Cra. 19 #8A-32, Bogotá 111221, Colombia
| | - Giuseppe E. Umana
- Department of Neurosurgery, Trauma and Gamma-Knife Center Cannizzaro Hospital, 95126 Catania, Italy
- Correspondence:
| | - Javier G. Patiño-Gomez
- Neurosurgery Department, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Cra. 19 #8A-32, Bogotá 111221, Colombia
| | - Edgar Ordoñez-Rubiano
- Neurosurgery Department, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Cra. 19 #8A-32, Bogotá 111221, Colombia
| | - Hernando A. Cifuentes-Lobelo
- Neurosurgery Department, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Cra. 19 #8A-32, Bogotá 111221, Colombia
| | - Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia s.r.l., 95029 Vaigrande, Italy
| | - Anna Viola
- Department of Radiation Oncology, REM Radioterapia s.r.l., 95029 Vaigrande, Italy
| | - Valentina Zagardo
- Department of Radiation Oncology, REM Radioterapia s.r.l., 95029 Vaigrande, Italy
| | | | - Ottavio S. Tomasi
- Department of Neurosurgery, Christian-Doppler-Klinik, Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Alvaro Campero
- Department of Neurological Surgery, Padilla Hospital, Tucumán T4000, Argentina
| | - Matias Baldoncini
- Department of Neurological Surgery, San Fernando Hospital, Buenos Aires B1646, Argentina
| |
Collapse
|
16
|
Shahid AH, Tripathi M, Batish A, Parth J, Bhatta RK, Chaurasia B, Marcel EI, Bal A, Dutta P, Mohindra S, Ahuja CK. Letter to the Editor Regarding "Small Cell Glioblastoma of the Sella Turcica Region: Case Report and Review of the Literature". World Neurosurg 2023; 171:185-189. [PMID: 36869556 DOI: 10.1016/j.wneu.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 03/05/2023]
Affiliation(s)
- Adnan Hussain Shahid
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Batish
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jani Parth
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Raj Kumar Bhatta
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| | - Ehanga Idi Marcel
- Department of Surgery, Mulago National Referral Hospital/COSECSA, Kampala, Uganda.
| | - Amanjit Bal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, Mohali, Punjab, India
| | - Pinaki Dutta
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Mohindra
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag K Ahuja
- Department of Neuroradiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Prediction of the Topography of the Corticospinal Tract on T1-Weighted MR Images Using Deep-Learning-Based Segmentation. Diagnostics (Basel) 2023; 13:diagnostics13050911. [PMID: 36900055 PMCID: PMC10000710 DOI: 10.3390/diagnostics13050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
INTRODUCTION Tractography is an invaluable tool in the planning of tumor surgery in the vicinity of functionally eloquent areas of the brain as well as in the research of normal development or of various diseases. The aim of our study was to compare the performance of a deep-learning-based image segmentation for the prediction of the topography of white matter tracts on T1-weighted MR images to the performance of a manual segmentation. METHODS T1-weighted MR images of 190 healthy subjects from 6 different datasets were utilized in this study. Using deterministic diffusion tensor imaging, we first reconstructed the corticospinal tract on both sides. After training a segmentation model on 90 subjects of the PIOP2 dataset using the nnU-Net in a cloud-based environment with graphical processing unit (Google Colab), we evaluated its performance using 100 subjects from 6 different datasets. RESULTS Our algorithm created a segmentation model that predicted the topography of the corticospinal pathway on T1-weighted images in healthy subjects. The average dice score was 0.5479 (0.3513-0.7184) on the validation dataset. CONCLUSIONS Deep-learning-based segmentation could be applicable in the future to predict the location of white matter pathways in T1-weighted scans.
Collapse
|
18
|
Forecasting Molecular Features in IDH-Wildtype Gliomas: The State of the Art of Radiomics Applied to Neurosurgery. Cancers (Basel) 2023; 15:cancers15030940. [PMID: 36765898 PMCID: PMC9913449 DOI: 10.3390/cancers15030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, marks a step forward the future diagnostic approach to these neoplasms. Alongside this, radiomics has experienced rapid evolution over the last several years, allowing us to correlate tumor imaging heterogeneity with a wide range of tumor molecular and subcellular features. Radiomics is a translational field focused on decoding conventional imaging data to extrapolate the molecular and prognostic features of tumors such as gliomas. We herein analyze the state-of-the-art of radiomics applied to glioblastoma, with the goal to estimate its current clinical impact and potential perspectives in relation to well-rounded patient management, including the end-of-life stage. METHODS A literature review was performed on the PubMed, MEDLINE and Scopus databases using the following search items: "radiomics and glioma", "radiomics and glioblastoma", "radiomics and glioma and IDH", "radiomics and glioma and TERT promoter", "radiomics and glioma and EGFR", "radiomics and glioma and chromosome". RESULTS A total of 719 articles were screened. Further quantitative and qualitative analysis allowed us to finally include 11 papers. This analysis shows that radiomics is rapidly evolving towards a reliable tool. CONCLUSIONS Further studies are necessary to adjust radiomics' potential to the newest molecular requirements pointed out by the 2021 WHO classification of CNS tumors. At a glance, its application in the clinical routine could be beneficial to achieve a timely diagnosis, especially for those patients not eligible for surgery and/or adjuvant therapies but still deserving palliative and supportive care.
Collapse
|
19
|
Diehl CD, Rosenkranz E, Schwendner M, Mißlbeck M, Sollmann N, Ille S, Meyer B, Combs SE, Krieg SM. Dose Reduction to Motor Structures in Adjuvant Fractionated Stereotactic Radiotherapy of Brain Metastases: nTMS-Derived DTI-Based Motor Fiber Tracking in Treatment Planning. Cancers (Basel) 2022; 15:cancers15010282. [PMID: 36612277 PMCID: PMC9818359 DOI: 10.3390/cancers15010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Resection of brain metastases (BM) close to motor structures is challenging for treatment. Navigated transcranial magnetic stimulation (nTMS) motor mapping, combined with diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTmot.TMS), is a valuable tool in neurosurgery to preserve motor function. This study aimed to assess the practicability of DTI-FTmot.TMS for local adjuvant radiotherapy (RT) planning of BM. Methods: Presurgically generated DTI-FTmot.TMS-based corticospinal tract (CST) reconstructions (FTmot.TMS) of 24 patients with 25 BM resected during later surgery were incorporated into the RT planning system. Completed fractionated stereotactic intensity-modulated RT (IMRT) plans were retrospectively analyzed and adapted to preserve FTmot.TMS. Results: In regular plans, mean dose (Dmean) of complete FTmot.TMS was 5.2 ± 2.4 Gy. Regarding planning risk volume (PRV-FTTMS) portions outside of the planning target volume (PTV) within the 17.5 Gy (50%) isodose line, the DTI-FTmot.TMS Dmean was significantly reduced by 33.0% (range, 5.9−57.6%) from 23.4 ± 3.3 Gy to 15.9 ± 4.7 Gy (p < 0.001). There was no significant decline in the effective treatment dose, with PTV Dmean 35.6 ± 0.9 Gy vs. 36.0 ± 1.2 Gy (p = 0.063) after adaption. Conclusions: The DTI-FTmot.TMS-based CST reconstructions could be implemented in adjuvant IMRT planning of BM. A significant dose reduction regarding motor structures within critical dose levels seems possible.
Collapse
Affiliation(s)
- Christian D. Diehl
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
- Correspondence:
| | - Enrike Rosenkranz
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Martin Mißlbeck
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
20
|
Uppal S, Ashwariya M, Duggal P, Sharma M, Chaurasia B. Letter to the Editor Regarding “Sellar Xanthogranuloma: A Quest Based on 9 Cases Assessed with an Anterior Pituitary Provocation Test”. World Neurosurg 2022; 168:316-317. [DOI: 10.1016/j.wneu.2022.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/15/2022]
|
21
|
Giammalva GR, Viola A, Maugeri R, Giardina K, Di Bonaventura R, Musso S, Brunasso L, Cepeda S, Della Pepa GM, Scerrati A, Mantovani G, Ferini G, Gerardi RM, Pino MA, Umana GE, Denaro L, Albanese A, Iacopino DG. Intraoperative Evaluation of Brain-Tumor Microvascularization through MicroV IOUS: A Protocol for Image Acquisition and Analysis of Radiomic Features. Cancers (Basel) 2022; 14:5335. [PMID: 36358754 PMCID: PMC9656308 DOI: 10.3390/cancers14215335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/09/2023] Open
Abstract
Microvascular Doppler (MicroV) is a new-generation Doppler technique developed by Esaote (Esaote s.p.a., Genova, Italy), which is able to visualize small and low-flow vessels through a suppression of interfering signals. MicroV uses advanced filters that are able to differentiate tissue artifacts from low-speed blood flows; by exploiting the space-time coherence information, these filters can selectively suppress tissue components, preserving the signal coming from the microvascular flow. This technique is clinically applied to the study of the vascularization of parenchymatous lesions, often with better diagnostic accuracy than color/power Doppler techniques. The aim of this paper is to develop a reproducible protocol for the recording and collection of MicroV intraoperative ultrasound images by the use of a capable intraoperative ultrasound machine and post-processing aimed at evaluation of brain-tumor microvascularization through the analysis of radiomic features. The proposed protocol has been internally validated on eight patients and will be firstly applied to patients affected by WHO grade IV astrocytoma (glioblastoma-GBM) candidates for craniotomy and lesion removal. In a further stage, it will be generally applied to patients with primary or metastatic brain tumors. IOUS is performed before durotomy. Tumor microvascularization is evaluated using the MicroV Doppler technique and IOUS images are recorded, stored, and post-processed. IOUS images are remotely stored on the BraTIoUS database, which will promote international cooperation and multicentric analysis. Processed images and texture radiomic features are analyzed post-operatively using ImageJ, a free scientific image-analysis software based on the Sun-Java platform. Post-processing protocol is further described in-depth. The study of tumor microvascularization through advanced IOUS techniques such as MicroV could represent, in the future, a non-invasive and real-time method for intraoperative predictive evaluation of the tumor features. This evaluation could finally result in a deeper knowledge of brain-tumor behavior and in the on-going adaptation of the surgery with the improvement of surgical outcomes.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Anna Viola
- Department of Radiation Oncology, REM Radioterapia srl, 95029 Viagrande, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Kevin Giardina
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy
| | - Sofia Musso
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Lara Brunasso
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Santiago Cepeda
- Departamento de Neurocirugía, Hospital Universitario Río Hortega, 47012 Valladolid, Spain
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurosurgery, Sant’Anna University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Giorgio Mantovani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurosurgery, Sant’Anna University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95029 Viagrande, Italy
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Maria Angela Pino
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95126 Catania, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences DNS, University of Padua, 35128 Padua, Italy
| | - Alessio Albanese
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
22
|
Marcel EI, Ramdas GV, Chaurasia B. Letter to the Editor Regarding “Awake Craniotomy with Functional Mapping for Glioma Resection in a Limited-Resource-Setting: Preliminary Experience from a Lower-Middle Income Country”. World Neurosurg 2022; 164:463-464. [DOI: 10.1016/j.wneu.2022.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
|
23
|
Weiss Lucas C, Faymonville AM, Loução R, Schroeter C, Nettekoven C, Oros-Peusquens AM, Langen KJ, Shah NJ, Stoffels G, Neuschmelting V, Blau T, Neuschmelting H, Hellmich M, Kocher M, Grefkes C, Goldbrunner R. Surgery of Motor Eloquent Glioblastoma Guided by TMS-Informed Tractography: Driving Resection Completeness Towards Prolonged Survival. Front Oncol 2022; 12:874631. [PMID: 35692752 PMCID: PMC9186060 DOI: 10.3389/fonc.2022.874631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Surgical treatment of patients with glioblastoma affecting motor eloquent brain regions remains critically discussed given the risk–benefit dilemma of prolonging survival at the cost of motor-functional damage. Tractography informed by navigated transcranial magnetic stimulation (nTMS-informed tractography, TIT) provides a rather robust estimate of the individual location of the corticospinal tract (CST), a highly vulnerable structure with poor functional reorganisation potential. We hypothesised that by a more comprehensive, individualised surgical decision-making using TIT, tumours in close relationship to the CST can be resected with at least equal probability of gross total resection (GTR) than less eloquently located tumours without causing significantly more gross motor function harm. Moreover, we explored whether the completeness of TIT-aided resection translates to longer survival. Methods A total of 61 patients (median age 63 years, m = 34) with primary glioblastoma neighbouring or involving the CST were operated on between 2010 and 2015. TIT was performed to inform surgical planning in 35 of the patients (group T; vs. 26 control patients). To achieve largely unconfounded group comparisons for each co-primary outcome (i.e., gross-motor functional worsening, GTR, survival), (i) uni- and multivariate regression analyses were performed to identify features of optimal outcome prediction; (ii), optimal propensity score matching (PSM) was applied to balance those features pairwise across groups, followed by (iii) pairwise group comparison. Results Patients in group T featured a significantly higher lesion-CST overlap compared to controls (8.7 ± 10.7% vs. 3.8 ± 5.7%; p = 0.022). The frequency of gross motor worsening was higher in group T, albeit non-significant (n = 5/35 vs. n = 0/26; p = 0.108). PSM-based paired-sample comparison, controlling for the confounders of preoperative tumour volume and vicinity to the delicate vasculature of the insula, showed higher GTR rates in group T (77% vs. 69%; p = 0.025), particularly in patients with a priori intended GTR (87% vs. 78%; p = 0.003). This translates into a prolonged PFS in the same PSM subgroup (8.9 vs. 5.8 months; p = 0.03), with GTR representing the strongest predictor of PFS (p = 0.001) and OS (p = 0.0003) overall. Conclusion The benefit of TIT-aided GTR appears to overcome the drawbacks of potentially elevated motor functional risk in motor eloquent tumour localisation, leading to prolonged survival of patients with primary glioblastoma close to the CST.
Collapse
Affiliation(s)
- Carolin Weiss Lucas
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea Maria Faymonville
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Ricardo Loução
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Catharina Schroeter
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charlotte Nettekoven
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karl Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Volker Neuschmelting
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tobias Blau
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Neuschmelting
- Institute of Pathology and Neuropathology, University Hospital Essen, Essen, Germany
| | - Martin Hellmich
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany.,Institute for Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Palmisciano P, Ferini G, Barone F, Chavda V, Romano F, Amico P, Emmanuele D, Nicoletti GF, Pompili G, Giammalva GR, Maugeri R, Iacopino DG, Strigari L, Yeo TT, Cicero S, Scalia G, Umana GE. Extra-Neural Metastases From Primary Intracranial Ependymomas: A Systematic Review. Front Oncol 2022; 12:831016. [PMID: 35574408 PMCID: PMC9093681 DOI: 10.3389/fonc.2022.831016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Primary intracranial ependymomas (IE) are rare brain tumors rarely metastasizing outside the central nervous system. We systematically reviewed the literature on extra-neural metastases from primary IEs. Methods PubMed, Scopus, Web-of-Science, and Cochrane were searched following the PRISMA guidelines to include studies of extra-neural metastases from primary IEs. Clinical features, management strategies, and survival were analyzed. Results We collected 48 patients from 43 studies. Median age was 13 years (range, 2-65). Primary IEs were frequently located in the parietal (22.9%) and frontal (16.7%) lobes, and mostly treated with resection (95.8%) and/or radiotherapy (62.5%). Most IEs were of grade-III (79.1%), and few of grade-I (6.3%) or grade-II (14.6%). 45 patients experienced intracranial recurrences, mostly treated with resection (86.7%), radiotherapy (60%), and/or chemotherapy (24.4%). Median time-interval from primary IEs was 28 months (range, 0-140). Most extra-neural metastases were diagnosed at imaging (37.5%) or autopsy (35.4%). Extra-neural metastases were multifocal in 38 patients (79.1%), mostly involving cervical or hilar lymph-nodes (66.7%), lung/pleura (47.9%), and/or scalp (29.1%). Surgical resection (31.3%), chemotherapy (31.3%) and locoregional radiotherapy (18.8%) were the most common treatments for extra-neural metastases, but 28 (58.3%) patients were not treated. At last follow-up, 37 patients died with median overall-survivals from primary IEs of 36 months (range, 1-239), and from extra-neural metastases of 3 months (range, 0.1-36). Overall-survival was significantly longer in patients with grade-I and II IEs (P=0.040). Conclusion Extra-neural metastases from primary IEs are rare, but mostly occur at later disease stages. Multidisciplinary management strategies should be intended mostly for palliation.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Italy
| | - Fabio Barone
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States
| | | | - Paolo Amico
- Department of Pathological Anatomy, Cannizzaro Hospital, Catania, Italy
| | | | - Giovanni F. Nicoletti
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, Catania, Italy
| | | | - Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedical Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedical Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedical Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tseng T. Yeo
- Department of Surgery, Division of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Salvatore Cicero
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, Catania, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
25
|
Eldaief MC, Dickerson BC, Camprodon JA. Transcranial Magnetic Stimulation for the Neurological Patient: Scientific Principles and Applications. Semin Neurol 2022; 42:149-157. [PMID: 35213900 PMCID: PMC9838190 DOI: 10.1055/s-0041-1742265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-invasive brain stimulation has been increasingly recognized for its potential as an investigational, diagnostic and therapeutic tool across the clinical neurosciences. Transcranial magnetic stimulation (TMS) is a non-invasive method of focal neuromodulation. Diagnostically, TMS can be used to probe cortical excitability and plasticity, as well as for functional mapping. Therapeutically, depending on the pattern employed, TMS can either facilitate or inhibit stimulated cortex potentially modulating maladaptive physiology through its effects on neuroplasticity. Despite this potential, applications of TMS in neurology have only been approved for diagnostic clinical neurophysiology, pre-surgical mapping of motor and language cortex, and the treatment of migraines. In this article, we discuss the principles of TMS and its clinical applications in neurology, including experimental applications in stroke rehabilitation, seizures, autism spectrum disorder, neurodegenerative disorders, movement disorders, tinnitus, chronic pain and functional neurological disorder. To promote increased cross-talk across neurology and psychiatry, we also succinctly review the TMS literature for the treatment of major depression and obsessive compulsive disorder. Overall, we argue that larger clinical trials that are better informed by circuit-level biomarkers and pathophysiological models will lead to an expansion of the application of TMS for patients cared for by neurologists.
Collapse
Affiliation(s)
- Mark C. Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts,Department of Psychology, Center for Brain Science, Neuroimaging Facility, Harvard University, Cambridge, Massachusetts
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Joan A. Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
26
|
Diehl C, Rosenkranz E, Mißlbeck M, Schwendner M, Sollmann N, Ille S, Meyer B, Combs S, Bernhardt D, Krieg S. nTMS-derived DTI-based motor fiber tracking in radiotherapy treatment planning of high-grade gliomas for avoidance of motor structures. Radiother Oncol 2022; 171:189-197. [DOI: 10.1016/j.radonc.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
27
|
Rahman R, Rahman S, Al-Salihi MM, Sarwar ASM, Rahman MM, Habib R, Hoq MZ. Letter: Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2022; 90:e137-e138. [PMID: 35238808 DOI: 10.1227/neu.0000000000001916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Raphia Rahman
- Department of Osteopathic Medicine, Rowan School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Sabrina Rahman
- Department of Public Health, Independent University-Bangladesh, Dhaka, Bangladesh
| | | | | | - Md Moshiur Rahman
- Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | | | - Md Ziaul Hoq
- Department of Pediatric Neurosurgery, NINS, Bangladesh
| |
Collapse
|
28
|
Giammalva GR, Ferini G, Musso S, Salvaggio G, Pino MA, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Di Bonaventura R, Umana GE, Graziano F, Palmisciano P, Scalia G, Tumbiolo S, Midiri M, Iacopino DG, Maugeri R. Intraoperative Ultrasound: Emerging Technology and Novel Applications in Brain Tumor Surgery. Front Oncol 2022; 12:818446. [PMID: 35178348 PMCID: PMC8844995 DOI: 10.3389/fonc.2022.818446] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
Intraoperative ultrasound (IOUS) is becoming progressively more common during brain tumor surgery. We present data from our case series of brain tumor surgery performed with the aid of IOUS in order to identify IOUS advantages and crucial aspects that may improve the management of neurosurgical procedures for brain tumors. From January 2021 to September 2021, 17 patients with different brain tumors underwent brain tumor surgery aided by the use of IOUS. During surgery, the procedure was supported by the use of multiples ultrasonographic modalities in addition to standard B-mode: Doppler, color Doppler, elastosonography, and contrast-enhanced intraoperative ultrasound (CEUS). In selected cases, the use of IOUS during surgical procedure was combined with neuronavigation and the use of intraoperative fluorescence by the use of 5-aminolevulinic acid (5-ALA). In one patient, a preoperative ultrasound evaluation was performed through a former iatrogenic skull defect. This study confirms the role of IOUS in maximizing the EOR, which is strictly associated with postoperative outcome, overall survival (OS), and patient’s quality of life (QoL). The combination of ultrasound advanced techniques such as Doppler, color Doppler, elastosonography, and contrast-enhanced intraoperative ultrasound (CEUS) is crucial to improve surgical effectiveness and patient’s safety while expanding surgeon’s view.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Catania, Italy
| | - Sofia Musso
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Salvaggio
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Francesca Graziano
- Department of Neurosurgery Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | | | - Massimo Midiri
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
29
|
Primary Skull Base Chondrosarcomas: A Systematic Review. Cancers (Basel) 2021; 13:cancers13235960. [PMID: 34885071 PMCID: PMC8656924 DOI: 10.3390/cancers13235960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Primary skull base chondrosarcomas (SBCs) may carry significant tumor-burden by causing severe cranial nerve neuropathies. Current treatment strategies mainly focus on surgical resection and radiotherapy protocols, with a wide range of findings in terms of efficacy and safety. The aim of our systematic review was to comprehensively analyze the current literature on primary SBCs, describing clinical and radiological characteristics, available management strategies, treatment outcomes, and prognoses. We found that most primary SBCs show benign slow-growing patterns but may cause neurological deficits by compressing critical neurovascular structures. Open surgical approaches favor maximal resection with acceptable complication rates, but only a few studies reported the use of newer endoscopic approaches. Proton-based, photon-based, and carbon-based radiotherapy protocols may also allow safe and effective local tumor control as adjuvant treatments or stand-alone strategies in patients not eligible to undergo surgery. Overall, primary SBCs’ prognoses proved to be favorable and comparable to benign skull base neoplasms. Abstract Background: Primary skull base chondrosarcomas (SBCs) can severely affect patients’ quality of life. Surgical-resection and radiotherapy are feasible but may cause debilitating complications. We systematically reviewed the literature on primary SBCs. Methods: PubMed, EMBASE, Scopus, Web-of-Science, and Cochrane were searched following the PRISMA guidelines to include studies of patients with primary SBCs. Clinical characteristics, management strategies, and treatment outcomes were analyzed. Results: We included 33 studies comprising 1307 patients. Primary SBCs mostly involved the middle-fossa (72.7%), infiltrating the cavernous-sinus in 42.4% of patients. Cranial-neuropathies were reported in 810 patients (62%). Surgical-resection (93.3%) was preferred over biopsy (6.6%). The most frequent open surgical approaches were frontotemporal-orbitozygomatic (17.6%) and pterional (11.9%), and 111 patients (21.3%) underwent endoscopic-endonasal resection. Post-surgical cerebrospinal-fluid leaks occurred in 36 patients (6.5%). Radiotherapy was delivered in 1018 patients (77.9%): photon-based (41.4%), proton-based (64.2%), and carbon-based (13.1%). Severe post-radiotherapy complications, mostly hypopituitarism (15.4%) and hearing loss (7.1%) were experienced by 251 patients (30.7%). Post-treatment symptom-improvement (46.7%) and reduced/stable tumor volumes (85.4%) showed no differences based on radiotherapy-protocols (p = 0.165; p = 0.062). Median follow-up was 67-months (range, 0.1–376). SBCs recurrences were reported in 211 cases (16.1%). The 5-year and 10-year progression-free survival rates were 84.3% and 67.4%, and overall survival rates were 94% and 84%. Conclusion: Surgical-resection and radiotherapy are effective treatments in primary SBCs, with acceptable complication rates and favorable local tumor control.
Collapse
|
30
|
Giammalva GR, Musso S, Salvaggio G, Pino MA, Gerardi RM, Umana GE, Midiri M, Iacopino DG, Maugeri R. Coplanar Indirect-Navigated Intraoperative Ultrasound: Matching Un-navigated Probes With Neuronavigation During Neurosurgical Procedures. How We Do It. Oper Neurosurg (Hagerstown) 2021; 21:485-490. [PMID: 34498674 DOI: 10.1093/ons/opab316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Intraoperative ultrasound (IOUS) is becoming more and more adopted in neurosurgery, since it has been associated to greater extent of resection (EOR) and to gross total resection (GTR) during brain tumor surgery. IOUS main limitations are spatial resolution, width and orientation of the field of view and scan quality, which are operator-dependent. Furthermore, most neurosurgeons are not confident with this technique, which needs a long learning curve in order to identify and interpret anatomic structures. OBJECTIVE To describe an effective procedure to take advantages of both IOUS and neuronavigation in case of lack of a navigated ultrasound system. METHODS We propose a reliable "indirect-navigated" technique which is based on the optical tracking of un-navigated IOUS probe by the use of a multipurpose passive tracker and a proper configuration of common neuronavigation system. RESULTS Navigated IOUS is not available in all neurosurgical operating rooms but ultrasound systems are common tools in many hospital facilities and neuronavigation systems are common in almost all the neurosurgical operating rooms. The proposed indirect-navigated technique shows some paramount advantages: since almost all the neurosurgical operating rooms are provided with a neuronavigation system, the only tool needed is the ultrasonography. Therefore, this procedure is largely accessible and costless, reliable, and may improve the neurosurgeon's ability in ultrasonographic anatomy. CONCLUSION This technique is based on the coplanar and coupled use of both un-navigated IOUS probe and standard optical neuronavigation, in order to allow the intraoperative navigation of IOUS images when a navigated ultrasound system is not available.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Sofia Musso
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Salvaggio
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Massimo Midiri
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
31
|
Assessment of a Reliable Fractional Anisotropy Cutoff in Tractography of the Corticospinal Tract for Neurosurgical Patients. Brain Sci 2021; 11:brainsci11050650. [PMID: 34065682 PMCID: PMC8155834 DOI: 10.3390/brainsci11050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Tractography has become a standard technique for planning neurosurgical operations in the past decades. This technique relies on diffusion magnetic resonance imaging. The cutoff value for the fractional anisotropy (FA) has an important role in avoiding false-positive and false-negative results. However, there is a wide variation in FA cutoff values. Methods: We analyzed a prospective cohort of 14 patients (six males and eight females, 50.1 ± 4.0 years old) with intracerebral tumors that were mostly gliomas. Magnetic resonance imaging (MRI) was obtained within 7 days before and within 7 days after surgery with T1 and diffusion tensor image (DTI) sequences. We, then, reconstructed the corticospinal tract (CST) in all patients and extracted the FA values within the resulting volume. Results: The mean FA in all CSTs was 0.4406 ± 0.0003 with the fifth percentile at 0.1454. FA values in right-hemispheric CSTs were lower (p < 0.0001). Postoperatively, the FA values were more condensed around their mean (p < 0.0001). The analysis of infiltrated or compressed CSTs revealed a lower fifth percentile (0.1407 ± 0.0109 versus 0.1763 ± 0.0040, p = 0.0036). Conclusion: An FA cutoff value of 0.15 appears to be reasonable for neurosurgical patients and may shorten the tractography workflow. However, infiltrated fiber bundles must trigger vigilance and may require lower cutoffs.
Collapse
|