1
|
Oddsson LIE, Bisson T, Cohen HS, Iloputaife I, Jacobs L, Kung D, Lipsitz LA, Manor B, McCracken P, Rumsey Y, Wrisley DM, Koehler-McNicholas SR. Extended effects of a wearable sensory prosthesis on gait, balance function and falls after 26 weeks of use in persons with peripheral neuropathy and high fall risk-The walk2Wellness trial. Front Aging Neurosci 2022; 14:931048. [PMID: 36204554 PMCID: PMC9531134 DOI: 10.3389/fnagi.2022.931048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
Background We recently reported that individuals with impaired plantar sensation and high fall risk due to sensory peripheral neuropathy (PN) improved gait and balance function following 10 weeks of use of Walkasins®, a wearable lower limb sensory prosthesis that provides directional specific mechanical tactile stimuli related to plantar pressure measurements during standing and walking (RxFunction Inc., Eden Prairie, MN, United States). Here, we report 26-week outcomes and compare pre- and in-study fall rates. We expected improvements in outcomes and reduced fall rates reported after 10 weeks of use to be sustained. Materials and methods Participants had clinically diagnosed PN with impaired plantar sensation, high fall risk (Functional Gait Assessment, FGA score < 23) and ability to sense tactile stimuli above the ankle at the location of the device. Additional outcomes included 10 m Gait Speed, Timed Up and Go (TUG), Four-Stage Balance Test, and self-reported outcomes, including Activities-Specific Balance Confidence scale and Vestibular Disorders Activities of Daily Living Scale. Participants tracked falls using a calendar. Results We assessed falls and self-reported outcomes from 44 individuals after 26 weeks of device use; 30 of them conducted in-person testing of clinical outcomes. Overall, improvements in clinical outcomes seen at 10 weeks of use remained sustained at 26 weeks with statistically significant increases compared to baseline seen in FGA scores (from 15.0 to 19.2), self-selected gait speed (from 0.89 to 0.97 m/s), and 4-Stage Balance Test (from 25.6 to 28.4 s), indicating a decrease in fall risk. Non-significant improvements were observed in TUG and fast gait speed. Overall, 39 falls were reported; 31 of them did not require medical treatment and four caused severe injury. Participants who reported falls over 6 months prior to the study had a 43% decrease in fall rate during the study as compared to self-report 6-month pre-study (11.8 vs. 6.7 falls/1000 patient days, respectively, p < 0.004), similar to the 46% decrease reported after 10 weeks of use. Conclusion A wearable sensory prosthesis can improve outcomes of gait and balance function and substantially decreases incidence of falls during long-term use. The sustained long-term benefits in clinical outcomes reported here lessen the likelihood that improvements are placebo effects. Clinical trial registration ClinicalTrials.gov, identifier #NCT03538756.
Collapse
Affiliation(s)
- Lars I. E. Oddsson
- RxFunction Inc., Eden Prairie, MN, United States
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
- Recanati School for Community Health Professions, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | - Teresa Bisson
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
- M Health Fairview, Minneapolis, MN, United States
| | | | - Ikechukwu Iloputaife
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
| | - Laura Jacobs
- RxFunction Inc., Eden Prairie, MN, United States
| | - Doris Kung
- Baylor College of Medicine, Houston, TX, United States
| | - Lewis A. Lipsitz
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Patricia McCracken
- Minneapolis Department of Veterans Affairs Health Care System, Minneapolis, MN, United States
| | | | | | - Sara R. Koehler-McNicholas
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
- Minneapolis Department of Veterans Affairs Health Care System, Minneapolis, MN, United States
| |
Collapse
|
2
|
Abdelaal A, El-Shamy S. Effect of Antigravity Treadmill Training on Gait and Balance in Patients with Diabetic Polyneuropathy: A Randomized Controlled Trial. F1000Res 2022; 11:52. [PMID: 36606118 PMCID: PMC9763767 DOI: 10.12688/f1000research.75806.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Diabetic polyneuropathy (DPN) is the most prevalent consequence of diabetes mellitus, and it has a significant impact on the patient's health. This study aims to evaluate effects of antigravity treadmill training on gait and balance in patients with DPN. Methods: The study included 45 males with type 2 diabetes who were randomly assigned to one of two groups: the experimental group (n=23) or the control group (n=22). For a period of 12 weeks, the experimental group received antigravity treadmill training (75% weight bearing, 30 min per session, three times per week) combined with traditional physical therapy. During the same time period, the control group received only traditional physical therapy. The Biodex Balance System was used to assess postural stability indices, while the GAITRite Walkway System was used to assess spatiotemporal gait parameters. All measurements were obtained before and at the end of the study after 12 weeks of treatment. Results: The mean values of all measured variables improved significantly in both groups (P<0.05), with the experimental group showing significantly greater improvements than the control group. The post-treatment gait parameters ( i.e., step length, step time, double support time, velocity, and cadence) were 61.3 cm, 0.49 sec, 0.25 sec, 83.09 cm/sec, and 99.78 steps/min as well as 56.14 cm, 0.55 sec, 0.29 sec, 75.73 cm/sec, and 88.14 steps/min for the experimental and control group, respectively. The post-treatment overall stability index was 0.32 and 0.70 for the experimental and control group, respectively. Conclusions: Antigravity treadmill training in combination with traditional physical therapy appears to be superior to traditional physical therapy alone in terms of gait and balance training. As a result, the antigravity treadmill has been found to be an effective device for the rehabilitation of DPN patients.
Collapse
Affiliation(s)
- Ashraf Abdelaal
- Physical Therapy, Umm-Al-Qura University, Makkah, 715, Saudi Arabia
| | - Shamekh El-Shamy
- Physical Therapy, Umm-Al-Qura University, Makkah, 715, Saudi Arabia
| |
Collapse
|
3
|
Abdelaal A, El-Shamy S. Effects of Antigravity Treadmill Training on Gait and Balance in Patients with Diabetic Polyneuropathy: A Randomized Controlled Trial. F1000Res 2022; 11:52. [PMID: 36606118 PMCID: PMC9763767 DOI: 10.12688/f1000research.75806.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/02/2023] Open
Abstract
Background: Diabetic polyneuropathy (DPN) is the most prevalent consequence of diabetes mellitus, and it has a significant impact on the patient's health. This study aims to evaluate effects of antigravity treadmill training on gait and balance in patients with DPN. Methods: The study included 45 males with type 2 diabetes who were randomly assigned to one of two groups: the experimental group (n=23) or the control group (n=22). For a period of 12 weeks, the experimental group received antigravity treadmill training (75% weight bearing, 30 min per session, three times per week) combined with traditional physical therapy. During the same time period, the control group received only traditional physical therapy. The Biodex Balance System was used to assess postural stability indices, while the GAITRite Walkway System was used to assess spatiotemporal gait parameters. All measurements were obtained before and at the end of the study after 12 weeks of treatment. Results: The mean values of all measured variables improved significantly in both groups (P<0.05), with the experimental group showing significantly greater improvements than the control group. The post-treatment gait parameters ( i.e., step length, step time, double support time, velocity, and cadence) were 61.3 cm, 0.49 sec, 0.25 sec, 83.09 cm/sec, and 99.78 steps/min as well as 56.14 cm, 0.55 sec, 0.29 sec, 75.73 cm/sec, and 88.14 steps/min for the experimental and control group, respectively. The post-treatment overall stability index was 0.32 and 0.70 for the experimental and control group, respectively. Conclusions: Antigravity treadmill training in combination with traditional physical therapy appears to be superior to traditional physical therapy alone in terms of gait and balance training. As a result, the antigravity treadmill has been found to be an effective device for the rehabilitation of DPN patients.
Collapse
Affiliation(s)
- Ashraf Abdelaal
- Physical Therapy, Umm-Al-Qura University, Makkah, 715, Saudi Arabia
| | - Shamekh El-Shamy
- Physical Therapy, Umm-Al-Qura University, Makkah, 715, Saudi Arabia
| |
Collapse
|
4
|
Abdelaal A, El-Shamy S. Effect of Antigravity Treadmill Training on Gait and Balance in Patients with Diabetic Polyneuropathy: A Randomized Controlled Trial. F1000Res 2022; 11:52. [PMID: 36606118 PMCID: PMC9763767 DOI: 10.12688/f1000research.75806.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/02/2023] Open
Abstract
Background: Diabetic polyneuropathy (DPN) is the most prevalent consequence of diabetes mellitus, and it has a significant impact on the patient's health. This study aims to evaluate effects of antigravity treadmill training on gait and balance in patients with DPN. Methods: The study included 45 males with type 2 diabetes who were randomly assigned to one of two groups: the experimental group (n=23) or the control group (n=22). For a period of 12 weeks, the experimental group received antigravity treadmill training (75% weight bearing, 30 min per session, three times per week) combined with traditional physical therapy. During the same time period, the control group received only traditional physical therapy. The Biodex Balance System was used to assess postural stability indices, while the GAITRite Walkway System was used to assess spatiotemporal gait parameters. All measurements were obtained before and at the end of the study after 12 weeks of treatment. Results: The mean values of all measured variables improved significantly in both groups (P<0.05), with the experimental group showing significantly greater improvements than the control group. The post-treatment gait parameters ( i.e., step length, step time, double support time, velocity, and cadence) were 61.3 cm, 0.49 sec, 0.25 sec, 83.09 cm/sec, and 99.78 steps/min as well as 56.14 cm, 0.55 sec, 0.29 sec, 75.73 cm/sec, and 88.14 steps/min for the experimental and control group, respectively. The post-treatment overall stability index was 0.32 and 0.70 for the experimental and control group, respectively. Conclusions: Antigravity treadmill training in combination with traditional physical therapy appears to be superior to traditional physical therapy alone in terms of gait and balance training. As a result, the antigravity treadmill has been found to be an effective device for the rehabilitation of DPN patients.
Collapse
Affiliation(s)
- Ashraf Abdelaal
- Physical Therapy, Umm-Al-Qura University, Makkah, 715, Saudi Arabia
| | - Shamekh El-Shamy
- Physical Therapy, Umm-Al-Qura University, Makkah, 715, Saudi Arabia
| |
Collapse
|