1
|
Ali A, Esmaeil A, Behbehani R. Mitochondrial Chronic Progressive External Ophthalmoplegia. Brain Sci 2024; 14:135. [PMID: 38391710 PMCID: PMC10887352 DOI: 10.3390/brainsci14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) is a rare disorder that can be at the forefront of several mitochondrial diseases. This review overviews mitochondrial CPEO encephalomyopathies to enhance accurate recognition and diagnosis for proper management. METHODS This study is conducted based on publications and guidelines obtained by selective review in PubMed. Randomized, double-blind, placebo-controlled trials, Cochrane reviews, and literature meta-analyses were particularly sought. DISCUSSION CPEO is a common presentation of mitochondrial encephalomyopathies, which can result from alterations in mitochondrial or nuclear DNA. Genetic sequencing is the gold standard for diagnosing mitochondrial encephalomyopathies, preceded by non-invasive tests such as fibroblast growth factor-21 and growth differentiation factor-15. More invasive options include a muscle biopsy, which can be carried out after uncertain diagnostic testing. No definitive treatment option is available for mitochondrial diseases, and management is mainly focused on lifestyle risk modification and supplementation to reduce mitochondrial load and symptomatic relief, such as ptosis repair in the case of CPEO. Nevertheless, various clinical trials and endeavors are still at large for achieving beneficial therapeutic outcomes for mitochondrial encephalomyopathies. KEY MESSAGES Understanding the varying presentations and genetic aspects of mitochondrial CPEO is crucial for accurate diagnosis and management.
Collapse
Affiliation(s)
| | | | - Raed Behbehani
- Neuro-Ophthalmology Unit, Ibn Sina Hospital, Al-Bahar Ophthalmology Center, Kuwait City 70035, Kuwait; (A.A.); (A.E.)
| |
Collapse
|
2
|
Finsterer J. Symmetric DWI hyperintensities in CMT1X patients after SARS-CoV-2 vaccination should not be classified as stroke-like lesions. World J Clin Cases 2023; 11:3929-3931. [PMID: 37383125 PMCID: PMC10294162 DOI: 10.12998/wjcc.v11.i16.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
The interesting case report by Zhang et al on a 39 years-old male with Charcot-Marie-Tooth disease type 1X has several limitations. The causal relation between the two episodes of asyndesis, dysphagia, and dyspnea 37 d after the second dose of the inactivated severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) vaccine (Beijing Institute of Biological Products Co., Ltd., Beijing, China) remains unproven. SARS-CoV-2 vaccination cannot trigger a genetic disorder. It also remains unsupported that the patient had a stroke-like episode (SLE). SLEs occur in mitochondrial disorders but not in hereditary neuropathies. Because of the episodic nature of the neurological symptoms, it is critical to rule out seizures. Overall, the causal relation between vaccination and the neurological complications remains unsupported and the interpretation of symmetric diffusion-weighted imaging lesions on cerebral magnetic resonance imaging should be carefully revised.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Neurology & Neurophysiology Center, Vienna 1180, Austria
| |
Collapse
|
3
|
Argudo JM, Astudillo Moncayo OM, Insuasti W, Garofalo G, Aguirre AS, Encalada S, Villamarin J, Oña S, Tenemaza MG, Eissa-Garcés A, Matcheswalla S, Ortiz JF. Arginine for the Treatment of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes: A Systematic Review. Cureus 2022; 14:e32709. [PMID: 36686069 PMCID: PMC9848692 DOI: 10.7759/cureus.32709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disease that lacks a definitive treatment. Lately, there has been an increased interest in the scientific community about the role of arginine in the short and long-term settings of the disease. We aim to conduct a systematic review of the clinical use of arginine in the management of MELAS and explore the role of arginine in the pathophysiology of the disease. We used PubMed advanced-strategy searches and only included full-text clinical trials on humans written in the English language. After applying the inclusion/exclusion criteria, four clinical trials were reviewed. We used the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for this systematic review. We used the Cochrane Collaboration risk-of-bias tool to assess the bias encountered in each study. Overall, IV arginine seems to be effective in improving symptoms during acute attacks of MELAS, while oral arginine supplementation increases endothelial function, preventing further stroke-like episodes.
Collapse
Affiliation(s)
| | | | - Walter Insuasti
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | | | - Alex S Aguirre
- School of Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | - Jose Villamarin
- School of Medicine, Universidad Central del Ecuador, Quito, ECU
| | - Sebastian Oña
- School of Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | | | | | - Juan Fernando Ortiz
- Department of Neurology, Corewell Health, Michigan State University, Grand Rapids, USA
| |
Collapse
|
4
|
Lopriore P, Gomes F, Montano V, Siciliano G, Mancuso M. Mitochondrial Epilepsy, a Challenge for Neurologists. Int J Mol Sci 2022; 23:ijms232113216. [PMID: 36362003 PMCID: PMC9656379 DOI: 10.3390/ijms232113216] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/29/2023] Open
Abstract
Primary mitochondrial diseases are relatively common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. These disorders typically affect tissues with high energy requirements, including the brain. Epilepsy affects >1% of the worldwide population, making it one of the most common neurological illnesses; it may be the presenting feature of a mitochondrial disease, but is often part of a multisystem clinical presentation. The major genetic causes of mitochondrial epilepsy are mutations in mitochondrial DNA and in the nuclear-encoded gene POLG. Treatment of mitochondrial epilepsy may be challenging, often representing a poor prognostic feature. This narrative review will cover the most recent advances in the field of mitochondrial epilepsy, from pathophysiology and genetic etiologies to phenotype and treatment options.
Collapse
Affiliation(s)
- Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fábio Gomes
- Neurology Department, Coimbra University Hospital Centre, 3004-561 Coimbra, Portugal
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
5
|
Finsterer J, Zarrouk S. Ischemic and Metabolic Stroke Can Co-occur in m.3243A>G Carriers: A Case Report. Cureus 2022; 14:e25705. [PMID: 35812548 PMCID: PMC9260700 DOI: 10.7759/cureus.25705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
|
6
|
Fine AL, Liebo G, Gavrilova RH, Britton JW. Seizure Semiology, EEG, and Imaging Findings in Epilepsy Secondary to Mitochondrial Disease. Front Neurol 2021; 12:779052. [PMID: 34912288 PMCID: PMC8666417 DOI: 10.3389/fneur.2021.779052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Identification of an underlying mitochondrial disorder can be challenging due to the significant phenotypic variability between and within specific disorders. Epilepsy can be a presenting symptom with several mitochondrial disorders. In this study, we evaluated clinical, electrophysiologic, and imaging features in patients with epilepsy and mitochondrial disorders to identify common features, which could aid in earlier identification of a mitochondrial etiology. Methods: This is a retrospective case series from January 2011 to December 2019 at a tertiary referral center of patients with epilepsy and a genetically confirmed diagnosis of a mitochondrial disorder. A total of 164 patients were reviewed with 20 patients fulfilling inclusion criteria. Results: A total of 20 patients (14 females, 6 males) aged 0.5-61 years with epilepsy and genetically confirmed mitochondrial disorders were identified. Status epilepticus occurred in 15 patients, with focal status epilepticus in 13 patients, including 9 patients with visual features. Abnormalities over the posterior cerebral regions were seen in 66% of ictal recordings and 44% of imaging studies. All the patients were on nutraceutical supplementation with no significant change in disease progression seen. At last follow-up, eight patients were deceased and the remainder had moderate-to-severe disability. Discussion: In this series of patients with epilepsy and mitochondrial disorders, we found increased propensity for seizures arising from the posterior cerebral regions. Over time, electroencephalogram (EEG) and imaging abnormalities increasingly occurred over the posterior cerebral regions. Focal seizures and focal status epilepticus with visual symptoms were common. Additional study is needed on nutraceutical supplementation in mitochondrial disorders.
Collapse
Affiliation(s)
- Anthony L. Fine
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Greta Liebo
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Ralitza H. Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
7
|
Pizzamiglio C, Bugiardini E, Macken WL, Woodward CE, Hanna MG, Pitceathly RDS. Mitochondrial Strokes: Diagnostic Challenges and Chameleons. Genes (Basel) 2021; 12:1643. [PMID: 34681037 PMCID: PMC8535945 DOI: 10.3390/genes12101643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial stroke-like episodes (SLEs) are a hallmark of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). They should be suspected in anyone with an acute/subacute onset of focal neurological symptoms at any age and are usually driven by seizures. Suggestive features of an underlying mitochondrial pathology include evolving MRI lesions, often originating within the posterior brain regions, the presence of multisystemic involvement, including diabetes, deafness, or cardiomyopathy, and a positive family history. The diagnosis of MELAS has important implications for those affected and their relatives, given it enables early initiation of appropriate treatment and genetic counselling. However, the diagnosis is frequently challenging, particularly during the acute phase of an event. We describe four cases of mitochondrial strokes to highlight the considerable overlap that exists with other neurological disorders, including viral and autoimmune encephalitis, ischemic stroke, and central nervous system (CNS) vasculitis, and discuss the clinical, laboratory, and imaging features that can help distinguish MELAS from these differential diagnoses.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (C.P.); (E.B.); (W.L.M.); (M.G.H.)
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (C.P.); (E.B.); (W.L.M.); (M.G.H.)
| | - William L. Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (C.P.); (E.B.); (W.L.M.); (M.G.H.)
| | - Cathy E. Woodward
- Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London WC1N 3BH, UK;
| | - Michael G. Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (C.P.); (E.B.); (W.L.M.); (M.G.H.)
| | - Robert D. S. Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (C.P.); (E.B.); (W.L.M.); (M.G.H.)
| |
Collapse
|