1
|
Carnero Contentti E, Rotstein D, Okuda DT, Paul F. How to avoid missing a diagnosis of neuromyelitis optica spectrum disorder. Mult Scler 2025; 31:8-22. [PMID: 39501631 DOI: 10.1177/13524585241292797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Recognizing neuromyelitis optica spectrum disorder (NMOSD) and differentiating NMOSD from multiple sclerosis (MS) and other disorders can be challenging yet it is extremely important to prevent misdiagnosis, defined in this review as the incorrect diagnosis of patients who truly have NMOSD, particularly in aquaporin-4-IgG (AQP4-IgG)-seronegative cases. The heterogeneity of clinical presentations and wide range of differential diagnoses often lead to missed diagnoses of NMOSD. Misapplication of the 2015 NMOSD criteria and misinterpretation of clinical and neuroradiological findings are relevant factors associated with misdiagnosis in clinical practice. Despite the presence of a specific biomarker for NMOSD (AQP4-IgG), misdiagnosis rates have been reported as high as 35%. Studies indicate that misdiagnosed patients often undergo unnecessary prolonged immunotherapy, leading to health risks and increased morbidity. Accurate definitive diagnosis is crucial as long-term outcomes and treatment approaches differ based on the correct diagnosis, and inappropriate immunotherapy can lead to disability in NMOSD patients. This review outlines factors linked to NMOSD misdiagnosis and briefly discusses strategies to reduce misdiagnosis.
Collapse
Affiliation(s)
- Edgar Carnero Contentti
- Neuroimmunology Unit, Department of Neurosciences, Hospital Aleman, Buenos Aires, Argentina
- CenRos, Neuroimmunology Clinic, INECO Neurociencias Oroño, Rosario, Argentina
| | - Dalia Rotstein
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Darin T Okuda
- Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Durand-Dubief F, Shor N, Audoin B, Bourre B, Cohen M, Kremer S, Maillart E, Papeix C, Ruet A, Savatovsky J, Tourdias T, Ayrignac X, Ciron J, Collongues N, Laplaud D, Michel L, Deschamps R, Thouvenot E, Zephir H, Marignier R, Cotton F. MRI management of NMOSD and MOGAD: Proposals from the French Expert Group NOMADMUS. J Neuroradiol 2024; 52:101235. [PMID: 39626832 DOI: 10.1016/j.neurad.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Currently, there are no available recommendations or guidelines on how to perform MRI monitoring in the management of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). The issue is to determine a valuable MRI monitoring protocol to be applied in the management of NMOSD and MOGAD, as previously proposed for the monitoring of multiple sclerosis. OBJECTIVES The objectives of this work are to establish proposals for a standardized and feasible MRI acquisition protocol, and to propose control time points for systematic MRI monitoring in the management of NMOSD and MOGAD. METHODS A steering committee composed of 7 neurologists and 5 neuroradiologists, experts in NMOSD and MOGAD from the French group NOMADMUS, defined 8 proposals based on their expertise and a review from the literature. These proposals were then submitted to a Rating Group composed of French NMOSD / MOGAD experts. RESULTS In the management of NMOSD and MOGAD, a consensus has been reached to perform systematic MRI of the brain, optic nerve and spinal cord, including cauda equina nerve roots, at the time of diagnosis, both without and after gadolinium administration. Moreover, it has been agreed to perform a systematic MRI scan 6 months after diagnosis, focusing on the area of interest, both without and after gadolinium administration. For long-term follow-up of NMOSD and MOGAD, and in the absence of clinical activity, it has been agreed to perform gadolinium-free MRI of the brain (+/- optic nerves) and spinal cord, every 36 months. Ideally, these MRI scans should be performed on the same MRI system, preferably a 3T MRI system for brain and optic nerve MRI, and at least a 1.5T MRI system for spinal cord MRI. CONCLUSIONS This expert consensus approach provides physicians with proposals for the MRI management of NMOSD and MOGAD.
Collapse
Affiliation(s)
- Françoise Durand-Dubief
- Service de Sclérose en Plaques, Pathologies de la substance blanche et Neuroinflammation, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France; Creatis LRMN, CNRS UMR 5220, Université Claude Bernard Lyon 1, INSERM U630, Lyon, France.
| | - Natalia Shor
- Service de Neuroradiologie, Hôpital de la Pitie-Salpetrière, AP-HP, Paris, France
| | - Bertrand Audoin
- Service de Neurologie, Maladies Inflammatoires du Cerveau et de la Moelle Épinière (MICeME), Hôpital de la Timone, AP-HM, Marseille CEDEX 5, France
| | - Bertrand Bourre
- Service de Neurologie, Centre Hospitalier Universitaire Rouen, Rouen F-76000, France
| | - Mickael Cohen
- CRC-SEP, Neurologie Pasteur 2, CHU de Nice, Nice, France; Université Cote d'Azur, UMR2CA (URRIS), Nice, France
| | - Stéphane Kremer
- Service d'imagerie 2, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Elisabeth Maillart
- Service de Neurologie, Hôpital de la Pitie-Salpetrière, Centre de Références des Maladies Inflammatoires Rares du Cerveau Et de la Moelle épinière, AP-HP, Paris, France
| | - Caroline Papeix
- Service de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Aurélie Ruet
- Service de Neurologie et Maladies inflammatoires du Système nerveux Central, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Julien Savatovsky
- Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Thomas Tourdias
- Neuroimagerie Diagnostique et Thérapeutique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux F-33000, France; Université Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-3300, France
| | - Xavier Ayrignac
- Université de Montpellier, Montpellier, France; Département de Neurologie, CRC-SEP, CRMR LEUKOFRANCE, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, France
| | - Jonathan Ciron
- Service de Neurologie, CRC-SEP, Centre Hospitalier Universitaire de Toulouse, France
| | - Nicolas Collongues
- Service de Neurologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France; Center for Clinical Investigation, INSERM U1434, Strasbourg, France; Department of Pharmacology, Addictology, Toxicology, and Therapeutics, Strasbourg University, Strasbourg, France
| | - David Laplaud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, CHU de Nantes, UMR 1064, CIC INSERM 1413, Service de Neurologie, Nantes F-44000, France
| | - Laure Michel
- Service de Neurologie, Centre Hospitalier Universitaire de Rennes, Rennes, France; Clinical Neuroscience Centre, University Hospital, Rennes University, CIC_P1414 INSERM, Rennes, France
| | - Romain Deschamps
- Service de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Eric Thouvenot
- Service de Neurologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France; Institut de Génomique Fonctionnelle, Université Montpellier, CNRS INSERM, Montpellier, France
| | - Hélène Zephir
- CCMR MIRCEM, Université de Lille INSERM U1172, CHU de Lille, Lille, France; CCMR MIRCEM, CHU de Lille, Lille, France
| | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la substance blanche et Neuroinflammation, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France
| | - François Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Creatis LRMN, CNRS UMR 5220, Université Claude Bernard Lyon 1, INSERM U630, Lyon, France
| |
Collapse
|
3
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
4
|
Foster MA, Pontillo G, Davagnanam I, Collorone S, Prados F, Kanber B, Yiannakas MC, Ogunbowale L, Burke A, Gandini Wheeler‐Kingshott CAM, Ciccarelli O, Brownlee W, Barkhof F, Toosy AT. Improving criteria for dissemination in space in multiple sclerosis by including additional regions. Ann Clin Transl Neurol 2024; 11:2572-2582. [PMID: 39078773 PMCID: PMC11514922 DOI: 10.1002/acn3.52170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE We investigated the effects of adding regions to current dissemination in space (DIS) criteria for multiple sclerosis (MS). METHODS Participants underwent brain, optic nerve, and spinal cord MRI. Baseline DIS was assessed by 2017 McDonald criteria and versions including optic nerve, temporal lobe, or corpus callosum as a fifth region (requiring 2/5), a version with all regions (requiring 3/7) and optic nerve variations requiring 3/5 and 4/5 regions. Performance was evaluated against MS diagnosis (2017 McDonald criteria) during follow-up. RESULTS Eighty-four participants were recruited (53F, 32.8 ± 7.1 years). 2017 McDonald DIS criteria were 87% sensitive (95% CI: 76-94), 73% specific (50-89), and 83% accurate (74-91) in identifying MS. Modified criteria with optic nerve improved sensitivity to 98% (91-100), with specificity 33% (13-59) and accuracy 84% (74-91). Criteria including temporal lobe showed sensitivity 94% (84-98), specificity 50% (28-72), and accuracy 82% (72-90); criteria including corpus callosum showed sensitivity 90% (80-96), specificity 68% (45-86), and accuracy 85% (75-91). Criteria adding all three regions (3/7 required) had sensitivity 95% (87-99), specificity 55% (32-76), and accuracy 85% (75-91). When requiring 3/5 regions (optic nerve as the fifth), sensitivity was 82% (70-91), specificity 77% (55-92), and accuracy 81% (71-89); with 4/5 regions, sensitivity was 56% (43-69), specificity 95% (77-100), and accuracy 67% (56-77). INTERPRETATION Optic nerve inclusion increased sensitivity while lowering specificity. Increasing required regions in optic nerve criteria increased specificity and decreased sensitivity. Results suggest considering the optic nerve for DIS. An option of 3/5 or 4/5 regions preserved specificity, and criteria adding all three regions had highest accuracy.
Collapse
Affiliation(s)
- Michael A. Foster
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Giuseppe Pontillo
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Advanced Biomedical Sciences and Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
| | - Indran Davagnanam
- Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Sara Collorone
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Ferran Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering ScienceUniversity College LondonLondonUK
- Universitat Oberta de CatalunyaBarcelonaSpain
| | - Baris Kanber
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering ScienceUniversity College LondonLondonUK
| | - Marios C. Yiannakas
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Lola Ogunbowale
- Strabismus and Neuro‐Ophthalmology ServiceMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | - Ailbhe Burke
- Strabismus and Neuro‐Ophthalmology ServiceMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- NIHR University College London Hospitals Biomedical Research CentreLondonUK
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- NIHR University College London Hospitals Biomedical Research CentreLondonUK
| | - Frederik Barkhof
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, Faculty of Engineering ScienceUniversity College LondonLondonUK
- NIHR University College London Hospitals Biomedical Research CentreLondonUK
| | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| |
Collapse
|
5
|
Etemadifar M, Norouzi M, Alaei SA, Karimi R, Salari M. The diagnostic performance of AI-based algorithms to discriminate between NMOSD and MS using MRI features: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 87:105682. [PMID: 38781885 DOI: 10.1016/j.msard.2024.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Magnetic resonance imaging [MRI] findings in Neuromyelitis optica spectrum disorder [NMOSD] and Multiple Sclerosis [MS] patients could lead us to discriminate toward them. For instance, U-fiber and Dawson's finger-type lesions are suggestive of MS, however linear ependymal lesions raise the possibility of NMOSD. Recently, artificial intelligence [AI] models have been used to discriminate between NMOSD and MS based on MRI features. In this study, we aim to systematically review the capability of AI algorithms in NMOSD and MS discrimination based on MRI features. METHOD We searched PubMed, Scopus, Web of Sciences, Embase, and IEEE databases up to August 2023. All studies that used AI-based algorithms to discriminate between NMOSD and MS using MRI features were included, without any restriction in time, region, race, and age. Data on NMOSD and MS patients, Aquaporin-4 antibodies [AQP4-Ab] status, diagnosis criteria, performance metrics (accuracy, sensitivity, specificity, and AUC), artificial intelligence paradigm, MR imaging, and used features were extracted. This study is registered with PROSPERO, CRD42023465265. RESULTS Fifteen studies were included in this systematic review, with sample sizes ranging between 53 and 351. 1,362 MS patients and 1,118 NMOSD patients were included in our systematic review. AQP4-Ab was positive in 94.9% of NMOSD patients in 9 studies. Eight studies used machine learning [ML] as a classifier, while 7 used deep learning [DL]. AI models based on only MRI or MRI and clinical features yielded a pooled accuracy of 82% (95% CI: 78-86%), sensitivity of 83% (95% CI: 79-88%), and specificity of 80% (95% CI: 75-86%). In subgroup analysis, using only MRI features yielded an accuracy, sensitivity, and specificity of 83% (95% CI: 78-88%), 81% (95% CI: 76-87%), and 84% (95% CI: 79-89%), respectively. CONCLUSION AI models based on MRI features showed a high potential to discriminate between NMOSD and MS. However, heterogeneity in MR imaging, model evaluation, and reporting performance metrics, among other confounders, affected the reliability of our results. Well-designed studies on multicentric datasets, standardized imaging and evaluation protocols, and detailed transparent reporting of results are needed to reach optimal performance.
Collapse
Affiliation(s)
- Masoud Etemadifar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Norouzi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed-Ali Alaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Raheleh Karimi
- Department of Epidemiology and Biostatistics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Czyżewski W, Litak J, Sobstyl J, Mandat T, Torres K, Staśkiewicz G. Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury. Int J Mol Sci 2024; 25:6553. [PMID: 38928258 PMCID: PMC11204105 DOI: 10.3390/ijms25126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jan Sobstyl
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Grzegorz Staśkiewicz
- Department of Human, Clinical and Radiological Anatomy, Medical University, 20-954 Lublin, Poland;
| |
Collapse
|
7
|
Haham N, Zveik O, Rechtman A, Brill L, Vaknin-Dembinsky A. Altered immune co-inhibitory receptor expression and correlation of LAG-3 expression to disease severity in NMOSD. J Neuroimmunol 2024; 388:578289. [PMID: 38301597 DOI: 10.1016/j.jneuroim.2024.578289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Co-inhibitory receptors (CIR)s regulate T cell-mediated immune responses and growing evidence links co-inhibitory receptors to the progression of neuroimmunological diseases. We studied the expression levels of CIRs: TIM-3, TIGIT, PD-1 and LAG-3 in the peripheral blood mononuclear cells (PBMCs) of 30 patients with Neuromyelitis optica spectrum disorder (NMOSD), 11 Multiple sclerosis (MS) patients and 31 Healthy controls (HC). We found that the mRNA expression levels of TIM-3 were significantly increased in NMOSD compared with HC, and increased LAG-3 surface protein expression was also observed on T-cells of NMOSD patients. Moreover, we observed a negative correlation between LAG-3 expression and disease severity in NMOSD. Our findings suggest a protective effect of LAG-3 in the setting of NMOSD, and that the differential expression of CIRs observed in this study may play a role in the pathological process of NMOSD.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
8
|
Carnero Contentti E, Okuda DT, Rojas JI, Chien C, Paul F, Alonso R. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J Neuroimaging 2023; 33:688-702. [PMID: 37322542 DOI: 10.1111/jon.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Differentiating multiple sclerosis (MS) from other relapsing inflammatory autoimmune diseases of the central nervous system such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is crucial in clinical practice. The differential diagnosis may be challenging but making the correct ultimate diagnosis is critical, since prognosis and treatments differ, and inappropriate therapy may promote disability. In the last two decades, significant advances have been made in MS, NMOSD, and MOGAD including new diagnostic criteria with better characterization of typical clinical symptoms and suggestive imaging (magnetic resonance imaging [MRI]) lesions. MRI is invaluable in making the ultimate diagnosis. An increasing amount of new evidence with respect to the specificity of observed lesions as well as the associated dynamic changes in the acute and follow-up phase in each condition has been reported in distinct studies recently published. Additionally, differences in brain (including the optic nerve) and spinal cord lesion patterns between MS, aquaporin4-antibody-positive NMOSD, and MOGAD have been described. We therefore present a narrative review on the most relevant findings in brain, spinal cord, and optic nerve lesions on conventional MRI for distinguishing adult patients with MS from NMOSD and MOGAD in clinical practice. In this context, cortical and central vein sign lesions, brain and spinal cord lesions characteristic of MS, NMOSD, and MOGAD, optic nerve involvement, role of MRI at follow-up, and new proposed diagnostic criteria to differentiate MS from NMOSD and MOGAD were discussed.
Collapse
Affiliation(s)
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan I Rojas
- Centro de esclerosis múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemman Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
9
|
Jarius S, Aktas O, Ayzenberg I, Bellmann-Strobl J, Berthele A, Giglhuber K, Häußler V, Havla J, Hellwig K, Hümmert MW, Kleiter I, Klotz L, Krumbholz M, Kümpfel T, Paul F, Ringelstein M, Ruprecht K, Senel M, Stellmann JP, Bergh FT, Tumani H, Wildemann B, Trebst C. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J Neurol 2023:10.1007/s00415-023-11634-0. [PMID: 37022481 DOI: 10.1007/s00415-023-11634-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
The term 'neuromyelitis optica spectrum disorders' (NMOSD) is used as an umbrella term that refers to aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica (NMO) and its formes frustes and to a number of closely related clinical syndromes without AQP4-IgG. NMOSD were originally considered subvariants of multiple sclerosis (MS) but are now widely recognized as disorders in their own right that are distinct from MS with regard to immunopathogenesis, clinical presentation, optimum treatment, and prognosis. In part 1 of this two-part article series, which ties in with our 2014 recommendations, the neuromyelitis optica study group (NEMOS) gives updated recommendations on the diagnosis and differential diagnosis of NMOSD. A key focus is on differentiating NMOSD from MS and from myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD), which shares significant similarity with NMOSD with regard to clinical and, partly, radiological presentation, but is a pathogenetically distinct disease. In part 2, we provide updated recommendations on the treatment of NMOSD, covering all newly approved drugs as well as established treatment options.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Katrin Giglhuber
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Vivien Häußler
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Markus Krumbholz
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedemann Paul
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | | | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Datyner E, Adeseye V, Porter K, Dryden I, Sarma A, Vu N, Patrick AE, Paueksakon P. Small vessel childhood primary angiitis of the central nervous system with positive anti-glial fibrillary acidic protein antibodies: a case report and review of literature. BMC Neurol 2023; 23:57. [PMID: 36737749 PMCID: PMC9895965 DOI: 10.1186/s12883-023-03093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Small vessel childhood primary angiitis of the central nervous system (SV-cPACNS) is a rare disease characterized by inflammation within small vessels such as arterioles or capillaries. CASE PRESENTATION We report a case of SV-cPACNS in an 8-year-old boy confirmed by brain biopsy. This patient was also incidentally found to have anti-glial fibrillary acidic protein (GFAP) antibodies in the cerebrospinal fluid (CSF) but had no evidence of antibody-mediated disease on brain biopsy. A literature review highlighted the rarity of SV-cPACNS and found no prior reports of CSF GFAP-associated SV-cPACNS in the pediatric age group. CONCLUSION We present the first case of biopsy proven SV-cPACNS vasculitis associated with an incidental finding of CSF GFAP antibodies. The GFAP antibodies are likely a clinically insignificant bystander in this case and possibly in other diseases with CNS inflammation. Further research is needed to determine the clinical significance of newer CSF autoantibodies such as anti-GFAP before they are used for medical decision-making in pediatrics.
Collapse
Affiliation(s)
- E Datyner
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - V Adeseye
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - K Porter
- grid.152326.10000 0001 2264 7217Vanderbilt University, Nashville, TN USA
| | - I Dryden
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21St Avenue South, Nashville, TN MCN C2318B37232-2561 USA
| | - A Sarma
- grid.412807.80000 0004 1936 9916Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - N Vu
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - AE Patrick
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - P Paueksakon
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21St Avenue South, Nashville, TN MCN C2318B37232-2561 USA
| |
Collapse
|
11
|
Fadda G, Flanagan EP, Cacciaguerra L, Jitprapaikulsan J, Solla P, Zara P, Sechi E. Myelitis features and outcomes in CNS demyelinating disorders: Comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front Neurol 2022; 13:1011579. [PMID: 36419536 PMCID: PMC9676369 DOI: 10.3389/fneur.2022.1011579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 07/25/2023] Open
Abstract
Inflammatory myelopathies can manifest with a combination of motor, sensory and autonomic dysfunction of variable severity. Depending on the underlying etiology, the episodes of myelitis can recur, often leading to irreversible spinal cord damage and major long-term disability. Three main demyelinating disorders of the central nervous system, namely multiple sclerosis (MS), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders (AQP4+NMOSD) and myelin oligodendrocyte glycoprotein-IgG associated disease (MOGAD), can induce spinal cord inflammation through different pathogenic mechanisms, resulting in a more or less profound disruption of spinal cord integrity. This ultimately translates into distinctive clinical-MRI features, as well as distinct patterns of disability accrual, with a step-wise worsening of neurological function in MOGAD and AQP4+NMOSD, and progressive disability accrual in MS. Early recognition of the specific etiologies of demyelinating myelitis and initiation of the appropriate treatment is crucial to improve outcome. In this review article we summarize and compare the clinical and imaging features of spinal cord involvement in these three demyelinating disorders, both during the acute phase and over time, and outline the current knowledge on the expected patterns of disability accrual and outcomes. We also discuss the potential implications of these observations for patient management and counseling.
Collapse
Affiliation(s)
- Giulia Fadda
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Eoin P. Flanagan
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Laura Cacciaguerra
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Pietro Zara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
12
|
Saab G, Munoz DG, Rotstein DL. Chronic Cognitive Impairment in AQP4+ NMOSD With Improvement in Cognition on Eculizumab: A Report of Two Cases. Front Neurol 2022; 13:863151. [PMID: 35645973 PMCID: PMC9136286 DOI: 10.3389/fneur.2022.863151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment may be associated with aquaporin-4 antibody positive (AQP4+) NMOSD, particularly where there is prominent cerebral, corpus callosum, or thalamic involvement. It is unclear to what extent this phenomenon may be treatable after months to years. We describe two cases of AQP4+ NMOSD with cognitive impairment persisting over more than 6 months, where cognition improved after eculizumab was initiated. In the first case, a 51-year-old woman presented with a 2-month history of cognitive decline and ataxia, and diffuse involvement of the corpus callosum on MRI. AQP4 antibody testing returned positive. Cognitive impairment persisted on therapy with mycophenolate, then rituximab. She was switched to eculizumab from rituximab 18 months after disease onset because of breakthrough optic neuritis; memory and cognitive function improved on eculizumab. In the second case, a 26-year-old woman initially presented with visual, auditory and tactile hallucinations, and impairment in activities of daily living, and was given a diagnosis of schizophrenia. Nine months later she was hospitalized for increasing confusion. MRI showed leukoencephalopathy and diffuse involvement of the corpus callosum with multiple enhancing callosal lesions. AQP4 antibody testing was positive and CSF testing for other antibodies of autoimmune encephalitis was negative. She had some improvement in cognition with high dose corticosteroids but remained significantly impaired. On follow-up, her repeat MRI showed a small new right inferomedial frontal enhancing lesion although she did not complain of any new cognitive issues, her MOCA score was 21/30, and she was started on eculizumab. Two months after eculizumab initiation she and her family reported cognitive improvement and MOCA score was 25/30. Common features of these two cases included extensive callosal involvement and an element of ongoing gadolinium enhancement on MRI. Our experience suggests the possibility that cognitive impairment may be amenable to immunotherapy in certain cases of NMOSD.
Collapse
Affiliation(s)
- Georges Saab
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - David G. Munoz
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - Dalia L. Rotstein
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
- *Correspondence: Dalia L. Rotstein
| |
Collapse
|
13
|
Yu J, Yan S, Niu P, Teng J. Relatively Early and Late-Onset Neuromyelitis Optica Spectrum Disorder in Central China: Clinical Characteristics and Prognostic Features. Front Neurol 2022; 13:859276. [PMID: 35493805 PMCID: PMC9046694 DOI: 10.3389/fneur.2022.859276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background We aimed to analyze the clinical characteristics and prognostic features of Chinese patients with relatively late-onset neuromyelitis optica spectrum disorder (RLO-NMOSD>40 years of age at disease onset), compared with patients with relatively early onset NMOSD (REO-NMOSD, ≤ 40 years of age at disease onset). Methods We retrospectively reviewed the medical records of patients with NMOSD in central China (with disease courses longer than 3 years) between January 2012 and January 2021. We further analyzed the clinical and prognostic differences between patients with REO-NMOSD and RLO-NMOSD. Results A total of 71 patients were included in this study. The results showed that 39 (54.9%) of the patients had RLO-NMOSD. The patients with RLO-NMOSD had higher expanded disability status scale (EDSS) scores than patients with REO-NMOSD at the initial (5.0 vs. 3.0, p = 0.01), 3-month (4.0 vs. 2.5, p = 0.001), 1-year (4.0 vs. 2.5, p = 0.003), 3rd-year (3.5 vs. 3.0, p = 0.0017), and final follow-up (4.0 vs. 2.5, P = 0.002) time points. The EDSS scores of visual function were 2.0 (1.0–3.0) in REO-NMOSD and 3.0 (2.0–3.0) in RLO-NMOSD (p = 0.038) at the final follow-up time point. The locations of spinal cord lesions at transverse myelitis (TM) onset were prone to cervical cord in patients with REO-NMOSD. There were no between-group treatment differences. The risk of requiring a cane to walk (EDSS score of 6.0) increased as the age of disease onset increased: for every 10-year increase in the age of disease onset, the risk of needing a cane to walk increased by 65% [hazard ratio (HR) = 1.65, 95% CI 1.15–2.38, p = 0.007]. Another significant predictor identified in the multivariate analysis was annualized relapse rate (ARR) (HR = 2.01, 95% CI 1.09–3.71, p = 0.025). In addition, we observed a positive correlation between age at onset and EDSS scores at the final follow-up (Spearman's r = 0.426, p < 0.0001) time point. EDSS scores at different periods were significantly different between patients with RLO-NMOSD and REO-NMOSD with anti-aquaporin-4 (AQP4) IgG positive. Conclusion The patients with RLO-NMOSD developed more severe disabilities than patients with REO-NMOSD at a variety of time periods. All of the patients may experience recurrent aggravated symptoms after their first year, with only patients with REO-NMOSD partly recovering from the 3rd year. The age at onset and ARR were the main predictors of outcomes.
Collapse
Affiliation(s)
- Jinbei Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Yan
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Pengpeng Niu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Junfang Teng
| |
Collapse
|