1
|
McKenna MC, Kleinerova J, Power A, Garcia-Gallardo A, Tan EL, Bede P. Quantitative and Computational Spinal Imaging in Neurodegenerative Conditions and Acquired Spinal Disorders: Academic Advances and Clinical Prospects. BIOLOGY 2024; 13:909. [PMID: 39596864 PMCID: PMC11592215 DOI: 10.3390/biology13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Quantitative spinal cord imaging has facilitated the objective appraisal of spinal cord pathology in a range of neurological conditions both in the academic and clinical setting. Diverse methodological approaches have been implemented, encompassing a range of morphometric, diffusivity, susceptibility, magnetization transfer, and spectroscopy techniques. Advances have been fueled both by new MRI platforms and acquisition protocols as well as novel analysis pipelines. The quantitative evaluation of specific spinal tracts and grey matter indices has the potential to be used in diagnostic and monitoring applications. The comprehensive characterization of spinal disease burden in pre-symptomatic cohorts, in carriers of specific genetic mutations, and in conditions primarily associated with cerebral disease, has contributed important academic insights. Methods: A narrative review was conducted to examine the clinical and academic role of quantitative spinal cord imaging in a range of neurodegenerative and acquired spinal cord disorders, including hereditary spastic paraparesis, hereditary ataxias, motor neuron diseases, Huntington's disease, and post-infectious or vascular disorders. Results: The clinical utility of specific methods, sample size considerations, academic role of spinal imaging, key radiological findings, and relevant clinical correlates are presented in each disease group. Conclusions: Quantitative spinal cord imaging studies have demonstrated the feasibility to reliably appraise structural, microstructural, diffusivity, and metabolic spinal cord alterations. Despite the notable academic advances, novel acquisition protocols and analysis pipelines are yet to be implemented in the clinical setting.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Alan Power
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| |
Collapse
|
2
|
Sun W, Liu SH, Wei XJ, Sun H, Ma ZW, Yu XF. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism. J Neurol 2024; 271:2238-2257. [PMID: 38367047 DOI: 10.1007/s00415-024-12201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Han Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Jing Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Wei Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue-Fan Yu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Müller HP, Kassubek J. Toward diffusion tensor imaging as a biomarker in neurodegenerative diseases: technical considerations to optimize recordings and data processing. Front Hum Neurosci 2024; 18:1378896. [PMID: 38628970 PMCID: PMC11018884 DOI: 10.3389/fnhum.2024.1378896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Neuroimaging biomarkers have shown high potential to map the disease processes in the application to neurodegenerative diseases (NDD), e.g., diffusion tensor imaging (DTI). For DTI, the implementation of a standardized scanning and analysis cascade in clinical trials has potential to be further optimized. Over the last few years, various approaches to improve DTI applications to NDD have been developed. The core issue of this review was to address considerations and limitations of DTI in NDD: we discuss suggestions for improvements of DTI applications to NDD. Based on this technical approach, a set of recommendations was proposed for a standardized DTI scan protocol and an analysis cascade of DTI data pre-and postprocessing and statistical analysis. In summary, considering advantages and limitations of the DTI in NDD we suggest improvements for a standardized framework for a DTI-based protocol to be applied to future imaging studies in NDD, towards the goal to proceed to establish DTI as a biomarker in clinical trials in neurodegeneration.
Collapse
|
4
|
Kushol R, Luk CC, Dey A, Benatar M, Briemberg H, Dionne A, Dupré N, Frayne R, Genge A, Gibson S, Graham SJ, Korngut L, Seres P, Welsh RC, Wilman AH, Zinman L, Kalra S, Yang YH. SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer. Comput Med Imaging Graph 2023; 108:102279. [PMID: 37573646 DOI: 10.1016/j.compmedimag.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.
Collapse
Affiliation(s)
- Rafsanjany Kushol
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| | - Collin C Luk
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Avyarthana Dey
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Benatar
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hannah Briemberg
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Annie Dionne
- Axe Neurosciences, CHU de Québec, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Nicolas Dupré
- Axe Neurosciences, CHU de Québec, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Summer Gibson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Simon J Graham
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Peter Seres
- Departments of Biomedical Engineering and Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Robert C Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Alan H Wilman
- Departments of Biomedical Engineering and Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sanjay Kalra
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada; Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yee-Hong Yang
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Fernandes F, Barbalho I, Bispo Júnior A, Alves L, Nagem D, Lins H, Arrais Júnior E, Coutinho KD, Morais AHF, Santos JPQ, Machado GM, Henriques J, Teixeira C, Dourado Júnior MET, Lindquist ARR, Valentim RAM. Digital Alternative Communication for Individuals with Amyotrophic Lateral Sclerosis: What We Have. J Clin Med 2023; 12:5235. [PMID: 37629277 PMCID: PMC10455505 DOI: 10.3390/jcm12165235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a disease that compromises the motor system and the functional abilities of the person in an irreversible way, causing the progressive loss of the ability to communicate. Tools based on Augmentative and Alternative Communication are essential for promoting autonomy and improving communication, life quality, and survival. This Systematic Literature Review aimed to provide evidence on eye-image-based Human-Computer Interaction approaches for the Augmentative and Alternative Communication of people with Amyotrophic Lateral Sclerosis. The Systematic Literature Review was conducted and guided following a protocol consisting of search questions, inclusion and exclusion criteria, and quality assessment, to select primary studies published between 2010 and 2021 in six repositories: Science Direct, Web of Science, Springer, IEEE Xplore, ACM Digital Library, and PubMed. After the screening, 25 primary studies were evaluated. These studies showcased four low-cost, non-invasive Human-Computer Interaction strategies employed for Augmentative and Alternative Communication in people with Amyotrophic Lateral Sclerosis. The strategies included Eye-Gaze, which featured in 36% of the studies; Eye-Blink and Eye-Tracking, each accounting for 28% of the approaches; and the Hybrid strategy, employed in 8% of the studies. For these approaches, several computational techniques were identified. For a better understanding, a workflow containing the development phases and the respective methods used by each strategy was generated. The results indicate the possibility and feasibility of developing Human-Computer Interaction resources based on eye images for Augmentative and Alternative Communication in a control group. The absence of experimental testing in people with Amyotrophic Lateral Sclerosis reiterates the challenges related to the scalability, efficiency, and usability of these technologies for people with the disease. Although challenges still exist, the findings represent important advances in the fields of health sciences and technology, promoting a promising future with possibilities for better life quality.
Collapse
Affiliation(s)
- Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ingridy Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Arnaldo Bispo Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Luca Alves
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Danilo Nagem
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Hertz Lins
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ernano Arrais Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Karilany D. Coutinho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Antônio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | - João Paulo Q. Santos
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | | | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - César Teixeira
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - Mário E. T. Dourado Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
- Department of Integrated Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil
| | - Ana R. R. Lindquist
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| |
Collapse
|
6
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
Chaki J, Woźniak M. Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development. Int J Mol Sci 2023; 24:ijms24031911. [PMID: 36768231 PMCID: PMC9915541 DOI: 10.3390/ijms24031911] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) allows the in vivo imaging of pathological white matter alterations, either with unbiased voxel-wise or hypothesis-guided tract-based analysis. Alterations of diffusion metrics are indicative of the cerebral status of patients with amyotrophic lateral sclerosis (ALS) at the individual level. Using machine learning (ML) models to analyze complex and high-dimensional neuroimaging data sets, new opportunities for DTI-based biomarkers in ALS arise. This review aims to summarize how different ML models based on DTI parameters can be used for supervised diagnostic classifications and to provide individualized patient stratification with unsupervised approaches in ALS. To capture the whole spectrum of neuropathological signatures, DTI might be combined with additional modalities, such as structural T1w 3-D MRI in ML models. To further improve the power of ML in ALS and enable the application of deep learning models, standardized DTI protocols and multi-center collaborations are needed to validate multimodal DTI biomarkers. The application of ML models to multiparametric MRI/multimodal DTI-based data sets will enable a detailed assessment of neuropathological signatures in patients with ALS and the development of novel neuroimaging biomarkers that could be used in the clinical workup.
Collapse
|
9
|
Das T, Kaur H, Gour P, Prasad K, Lynn AM, Prakash A, Kumar V. Intersection of network medicine and machine learning towards investigating the key biomarkers and pathways underlying amyotrophic lateral sclerosis: a systematic review. Brief Bioinform 2022; 23:6780269. [PMID: 36411673 DOI: 10.1093/bib/bbac442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Network medicine is an emerging area of research that focuses on delving into the molecular complexity of the disease, leading to the discovery of network biomarkers and therapeutic target discovery. Amyotrophic lateral sclerosis (ALS) is a complicated rare disease with unknown pathogenesis and no available treatment. In ALS, network properties appear to be potential biomarkers that can be beneficial in disease-related applications when explored independently or in tandem with machine learning (ML) techniques. OBJECTIVE This systematic literature review explores recent trends in network medicine and implementations of network-based ML algorithms in ALS. We aim to provide an overview of the identified primary studies and gather details on identifying the potential biomarkers and delineated pathways. METHODS The current study consists of searching for and investigating primary studies from PubMed and Dimensions.ai, published between 2018 and 2022 that reported network medicine perspectives and the coupling of ML techniques. Each abstract and full-text study was individually evaluated, and the relevant studies were finally included in the review for discussion once they met the inclusion and exclusion criteria. RESULTS We identified 109 eligible publications from primary studies representing this systematic review. The data coalesced into two themes: application of network science to identify disease modules and promising biomarkers in ALS, along with network-based ML approaches. Conclusion This systematic review gives an overview of the network medicine approaches and implementations of network-based ML algorithms in ALS to determine new disease genes, and identify critical pathways and therapeutic target discovery for personalized treatment.
Collapse
Affiliation(s)
- Trishala Das
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Harbinder Kaur
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Pratibha Gour
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP-201303, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon-122413, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP-201303, India
| |
Collapse
|
10
|
Kocar TD, Behler A, Leinert C, Denkinger M, Ludolph AC, Müller HP, Kassubek J. Artificial neural networks for non-linear age correction of diffusion metrics in the brain. Front Aging Neurosci 2022; 14:999787. [PMID: 36337697 PMCID: PMC9632350 DOI: 10.3389/fnagi.2022.999787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 09/19/2023] Open
Abstract
Human aging is characterized by progressive loss of physiological functions. To assess changes in the brain that occur with increasing age, the concept of brain aging has gained momentum in neuroimaging with recent advancements in statistical regression and machine learning (ML). A common technique to assess the brain age of a person is, first, fitting a regression model to neuroimaging data from a group of healthy subjects, and then, using the resulting model for age prediction. Although multiparametric MRI-based models generally perform best, models solely based on diffusion tensor imaging have achieved similar results, with the benefits of faster data acquisition and better replicability across scanners and field strengths. In the present study, we developed an artificial neural network (ANN) for brain age prediction based upon tract-based fractional anisotropy (FA). Consequently, we investigated if this age-prediction model could also be used for non-linear age correction of white matter diffusion metrics in healthy adults. The brain age prediction accuracy of the ANN (R 2 = 0.47) was similar to established multimodal models. The comparison of the ANN-based age-corrected FA with the tract-wise linear age-corrected FA resulted in an R 2 value of 0.90 [0.82; 0.93] and a mean difference of 0.00 [-0.04; 0.05] for all tract systems combined. In conclusion, this study demonstrated the applicability of complex ANN models to non-linear age correction of tract-based diffusion metrics as a proof of concept.
Collapse
Affiliation(s)
- Thomas D. Kocar
- Department of Neurology, University of Ulm, Ulm, Germany
- Geriatric Center Ulm, Agaplesion Bethesda Ulm, University of Ulm, Ulm, Germany
- Institute of Geriatric Research, Ulm University Medical Center, Ulm, Germany
| | - Anna Behler
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Christoph Leinert
- Geriatric Center Ulm, Agaplesion Bethesda Ulm, University of Ulm, Ulm, Germany
- Institute of Geriatric Research, Ulm University Medical Center, Ulm, Germany
| | - Michael Denkinger
- Geriatric Center Ulm, Agaplesion Bethesda Ulm, University of Ulm, Ulm, Germany
- Institute of Geriatric Research, Ulm University Medical Center, Ulm, Germany
| | - Albert C. Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
11
|
Behler A, Müller HP, Ludolph AC, Lulé D, Kassubek J. A multivariate Bayesian classification algorithm for cerebral stage prediction by diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage Clin 2022; 35:103094. [PMID: 35772192 PMCID: PMC9253469 DOI: 10.1016/j.nicl.2022.103094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Novel DTI-based classification of ALS disease stages by a Bayesian approach is applied. Bayesian classification algorithm improves threshold-based staging method. Step forward in MRI-based patient stratification in ALS in vivo.
Background and Objective Diffusion tensor imaging (DTI) can be used to tract-wise map correlates of the sequential disease progression and, therefore, to assess disease stages of amyotrophic lateral sclerosis (ALS) in vivo. According to a threshold-based sequential scheme, a classification of ALS patients into disease stages is possible, however, several patients cannot be staged for methodological reasons. This study aims to implement a multivariate Bayesian classification algorithm for disease stage prediction at an individual ALS patient level based on DTI metrics of involved tract systems to improve disease stage mapping. Methods The analysis of fiber tracts involved in each stage of ALS was performed in 325 ALS patients and 130 age- and gender-matched healthy controls. Based on Bayes’ theorem and in accordance with the sequential disease progression, a multistage classifier was implemented. Patients were categorized into in vivo DTI stages using the threshold-based method and the Bayesian algorithm. By the margin of confidence, the reliability of the Bayesian categorizations was accessible. Results Based on the Bayesian multistage classifier, 88% of all ALS patients could be assigned into an ALS stage compared to 77% using the threshold-based staging scheme. Additionally, the confidence of all classifications could be estimated. Conclusions By the application of the multi-stage Bayesian classifier, an individualized in vivo cerebral staging of ALS patients was possible based on the sequentially involved tract systems and, furthermore, the reliability of the respective classifications could be determined. The Bayesian classification algorithm is an improvement of the threshold-based staging method and could provide a framework for extending the DTI-based in vivo cerebral staging in ALS.
Collapse
Affiliation(s)
- Anna Behler
- Department of Neurology, University of Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
12
|
Münch M, Müller HP, Behler A, Ludolph AC, Kassubek J. Segmental alterations of the corpus callosum in motor neuron disease: A DTI and texture analysis in 575 patients. Neuroimage Clin 2022; 35:103061. [PMID: 35653913 PMCID: PMC9163839 DOI: 10.1016/j.nicl.2022.103061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 10/29/2022]
Abstract
INTRODUCTION Within the core neuroimaging signature of amyotrophic lateral sclerosis (ALS), the corpus callosum (CC) is increasingly recognized as a consistent feature. The aim of this study was to investigate the sensitivity and specificity of the microstructural segmental CC morphology, assessed by diffusion tensor imaging (DTI) and high-resolution T1-weighted (T1w) imaging, in a large cohort of ALS patients including different clinical phenotypes. METHODS In a single-centre study, 575 patients with ALS (classical phenotype, N = 432; restricted phenotypes primary lateral sclerosis (PLS) N = 55, flail arm syndrome (FAS) N = 45, progressive bulbar palsy (PBP) N = 22, lower motor neuron disease (LMND) N = 21) and 112 healthy controls underwent multiparametric MRI, i.e. volume-rendering T1w scans and DTI. Tract-based fractional anisotropy statistics (TFAS) was applied to callosal tracts of CC areas I-V, identified from DTI data (tract-of-interest (TOI) analysis), and texture analysis was applied to T1w data. In order to further specify the callosal alterations, a support vector machine (SVM) algorithm was used to discriminate between motor neuron disease patients and controls. RESULTS The analysis of white matter integrity revealed predominantly FA reductions for tracts of the callosal areas I, II, and III (with highest reductions in callosal area III) for all ALS patients and separately for each phenotype when compared to controls; texture analysis demonstrated significant alterations of the parameters entropy and homogeneity for ALS patients and all phenotypes for the CC areas I, II, and III (with again highest reductions in callosal area III) compared to controls. With SVM applied on multiparametric callosal parameters of area III, a separation of all ALS patients including phenotypes from controls with 72% sensitivity and 73% specificity was achieved. These results for callosal area III parameters could be improved by an SVM of six multiparametric callosal parameters of areas I, II, and III, achieving a separation of all ALS patients including phenotypes from controls with 84% sensitivity and 85% specificity. DISCUSSION The multiparametric MRI texture and DTI analysis demonstrated substantial alterations of the frontal and central CC with most significant alterations in callosal area III (motor segment) in ALS and separately in all investigated phenotypes (PLS, FAS, PBP, LMND) in comparison to controls, while no significant differences were observed between ALS and its phenotypes. The combination of the texture and the DTI parameters in an unbiased SVM-based approach might contribute as a neuroimaging marker for the assessment of the CC in ALS, including subtypes.
Collapse
Affiliation(s)
| | | | - Anna Behler
- Department of Neurology, University of Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|