1
|
Buthut M, Starke G, Akmazoglu TB, Colucci A, Vermehren M, van Beinum A, Bublitz C, Chandler J, Ienca M, Soekadar SR. HYBRIDMINDS-summary and outlook of the 2023 international conference on the ethics and regulation of intelligent neuroprostheses. Front Hum Neurosci 2024; 18:1489307. [PMID: 39483192 PMCID: PMC11524843 DOI: 10.3389/fnhum.2024.1489307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Neurotechnology and Artificial Intelligence (AI) have developed rapidly in recent years with an increasing number of applications and AI-enabled devices that are about to enter the market. While promising to substantially improve quality of life across various severe medical conditions, there are also concerns that the convergence of these technologies, e.g., in the form of intelligent neuroprostheses, may have undesirable consequences and compromise cognitive liberty, mental integrity, or mental privacy. Therefore, various international organizations, such as the Organization for Economic Cooperation and Development (OECD) or United Nations Educational, Scientific and Cultural Organization (UNESCO), have formed initiatives to tackle such questions and develop recommendations that mitigate risks while fostering innovation. In this context, a first international conference on the ethics and regulation of intelligent neuroprostheses was held in Berlin, Germany, in autumn 2023. The conference gathered leading experts in neuroscience, engineering, ethics, law, philosophy as well as representatives of industry, policy making and the media. Here, we summarize the highlights of the conference, underline the areas in which a broad consensus was found among participants, and provide an outlook on future challenges in development, deployment, and regulation of intelligent neuroprostheses.
Collapse
Affiliation(s)
- Maria Buthut
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Starke
- Faculty of Medicine, Institute for History and Ethics of Medicine, Technical University of Munich, Munich, Germany
- École Polytechnique Fédérale de Lausanne, College of Humanities, Lausanne, Switzerland
| | | | - Annalisa Colucci
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Vermehren
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Marcello Ienca
- Faculty of Medicine, Institute for History and Ethics of Medicine, Technical University of Munich, Munich, Germany
- École Polytechnique Fédérale de Lausanne, College of Humanities, Lausanne, Switzerland
| | - Surjo R. Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences at the Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Ma ZZ, Wu JJ, Cao Z, Hua XY, Zheng MX, Xing XX, Ma J, Xu JG. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J Neuroeng Rehabil 2024; 21:91. [PMID: 38812014 PMCID: PMC11134735 DOI: 10.1186/s12984-024-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zhi Cao
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jian-Guang Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
4
|
Halawani A, Aljabri A, Bahathiq DM, Morya RE, Alghamdi S, Makkawi S. The efficacy of contralaterally controlled functional electrical stimulation compared to conventional neuromuscular electrical stimulation for recovery of limb function following a stroke: a systematic review and meta-analysis. Front Neurol 2024; 15:1340248. [PMID: 38450065 PMCID: PMC10915254 DOI: 10.3389/fneur.2024.1340248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Limb paresis following a stroke is a common sequela that can impact patients' quality of life. Many rehabilitation strategies targeting the restoration of motor function exist. This systematic review and meta-analysis aim to evaluate the effects of contralaterally controlled functional electrical stimulation (CCFES) as a modality for limb rehabilitation. Unlike conventional neuromuscular electrical simulation (NMES), the contra-laterality in CCFES is achieved by two methods a bend angle sensor or an electromyographic bridge (EMGB) method, both of which targets signals from the unaffected limb. Method This review study was performed following the preferred reporting item for systematic review and meta-analysis (PRISMA) guidelines. Records that met the inclusion criteria were extracted from the following databases: Medline, Embase, and Cochrane Register of Controlled Trials (CENTRAL). Additional articles were also retrieved from clinicaltrials.gov and China/Asia on Demand (CAOD). Only randomized controlled studies (RCTs) were included. Results Sixteen RCTs met the inclusion criteria, and 14 of which were included in the quantitative analysis (meta-analysis). The results of the analysis show that when compared to conventional NMES, CCFES displayed a better improvement in the upper extremity Fugl-Meyer assessment (UEFMA) (SMD = 0.41, 95% CI: 0.21, 0.62, p-value <0.0001, I2 = 15%, GRADE: moderate), box and blocks test (BBT) (SMD = 0.48, 95% CI: 0.10, 0.86, p-value = 0.01, I2 = 0%, GRADE: very low), modified Barthel index (mBI) (SMD = 0.44, 95% CI: 0.16, 0.71, p-value = 0.002, I2 = 0%, GRADE: moderate), active range of motion (AROM) (SMD = 0.61, 95% CI: 0.29, 0.94, p-value = 0.0002, I2 = 23%, GRADE: moderate), and surface electromyography (sEMG) scores (SMD = 0.52, 95% CI: 0.14, 0.90, p-value = 0.008, I2 = 0%, GRADE: low). The results of the subgroup analysis for the type of sensor used in CCFES shows that an EMGB (SMD = 0.58, 95% CI: 0.33, 0.84, p-value <0.00001, I2 = 7%) is more effective than a bend angle sensor (SMD = 0.17, 95% CI: -0.12, 0.45, p-value = 0.25, I2 = 0%). Conclusion The results of this study provide strong evidence that shows CCFES being a better electrical stimulation modality compared to conventional NMES. This could be explained by the fact that CCFES is bilateral in nature which offers a platform for better neuroplasticity following a stroke. There is still a need for high-quality studies with a standardized approach comparing CCFES to other treatment modalities. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=342670, identifier CRD42022342670.
Collapse
Affiliation(s)
- Alhussain Halawani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ammar Aljabri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Dena M. Bahathiq
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Roaa E. Morya
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Saeed Alghamdi
- Neuroscience Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Seraj Makkawi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Department of Neuroscience, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Brunner I, Lundquist CB, Pedersen AR, Spaich EG, Dosen S, Savic A. Brain computer interface training with motor imagery and functional electrical stimulation for patients with severe upper limb paresis after stroke: a randomized controlled pilot trial. J Neuroeng Rehabil 2024; 21:10. [PMID: 38245782 PMCID: PMC10799379 DOI: 10.1186/s12984-024-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Restorative Brain-Computer Interfaces (BCI) that combine motor imagery with visual feedback and functional electrical stimulation (FES) may offer much-needed treatment alternatives for patients with severely impaired upper limb (UL) function after a stroke. OBJECTIVES This study aimed to examine if BCI-based training, combining motor imagery with FES targeting finger/wrist extensors, is more effective in improving severely impaired UL motor function than conventional therapy in the subacute phase after stroke, and if patients with preserved cortical-spinal tract (CST) integrity benefit more from BCI training. METHODS Forty patients with severe UL paresis (< 13 on Action Research Arm Test (ARAT) were randomized to either a 12-session BCI training as part of their rehabilitation or conventional UL rehabilitation. BCI sessions were conducted 3-4 times weekly for 3-4 weeks. At baseline, Transcranial Magnetic Stimulation (TMS) was performed to examine CST integrity. The main endpoint was the ARAT at 3 months post-stroke. A binominal logistic regression was conducted to examine the effect of treatment group and CST integrity on achieving meaningful improvement. In the BCI group, electroencephalographic (EEG) data were analyzed to investigate changes in event-related desynchronization (ERD) during the course of therapy. RESULTS Data from 35 patients (15 in the BCI group and 20 in the control group) were analyzed at 3-month follow-up. Few patients (10/35) improved above the minimally clinically important difference of 6 points on ARAT, 5/15 in the BCI group, 5/20 in control. An independent-samples Mann-Whitney U test revealed no differences between the two groups, p = 0.382. In the logistic regression only CST integrity was a significant predictor for improving UL motor function, p = 0.007. The EEG analysis showed significant changes in ERD of the affected hemisphere and its lateralization only during unaffected UL motor imagery at the end of the therapy. CONCLUSION This is the first RCT examining BCI training in the subacute phase where only patients with severe UL paresis were included. Though more patients in the BCI group improved relative to the group size, the difference between the groups was not significant. In the present study, preserved CTS integrity was much more vital for UL improvement than which type of intervention the patients received. Larger studies including only patients with some preserved CST integrity should be attempted.
Collapse
Affiliation(s)
- Iris Brunner
- Department of Clinical Medicine, Hammel Neurocenter and University Hospital, Aarhus University, Voldbyvej 12, 8450, Hammel, Denmark.
| | | | - Asger Roer Pedersen
- University Research Clinic for Innovative Patient Pathways, Diagnostic Centre, Silkeborg Regional Hospital, 8600, Silkeborg, Denmark
| | - Erika G Spaich
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg, Denmark
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg, Denmark
| | - Andrej Savic
- Science and Research Centre, University of Belgrade-School of Electrical Engineering, Belgrade, 11000, Serbia
| |
Collapse
|
6
|
Khan MA, Fares H, Ghayvat H, Brunner IC, Puthusserypady S, Razavi B, Lansberg M, Poon A, Meador KJ. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front Neurol 2023; 14:1272992. [PMID: 38145118 PMCID: PMC10739305 DOI: 10.3389/fneur.2023.1272992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Stroke is one of the most common neurological conditions that often leads to upper limb motor impairments, significantly affecting individuals' quality of life. Rehabilitation strategies are crucial in facilitating post-stroke recovery and improving functional independence. Functional Electrical Stimulation (FES) systems have emerged as promising upper limb rehabilitation tools, offering innovative neuromuscular reeducation approaches. Objective The main objective of this paper is to provide a comprehensive systematic review of the start-of-the-art functional electrical stimulation (FES) systems for upper limb neurorehabilitation in post-stroke therapy. More specifically, this paper aims to review different types of FES systems, their feasibility testing, or randomized control trials (RCT) studies. Methods The FES systems classification is based on the involvement of patient feedback within the FES control, which mainly includes "Open-Loop FES Systems" (manually controlled) and "Closed-Loop FES Systems" (brain-computer interface-BCI and electromyography-EMG controlled). Thus, valuable insights are presented into the technological advantages and effectiveness of Manual FES, EEG-FES, and EMG-FES systems. Results and discussion The review analyzed 25 studies and found that the use of FES-based rehabilitation systems resulted in favorable outcomes for the stroke recovery of upper limb functional movements, as measured by the FMA (Fugl-Meyer Assessment) (Manually controlled FES: mean difference = 5.6, 95% CI (3.77, 7.5), P < 0.001; BCI-controlled FES: mean difference = 5.37, 95% CI (4.2, 6.6), P < 0.001; EMG-controlled FES: mean difference = 14.14, 95% CI (11.72, 16.6), P < 0.001) and ARAT (Action Research Arm Test) (EMG-controlled FES: mean difference = 11.9, 95% CI (8.8, 14.9), P < 0.001) scores. Furthermore, the shortcomings, clinical considerations, comparison to non-FES systems, design improvements, and possible future implications are also discussed for improving stroke rehabilitation systems and advancing post-stroke recovery. Thus, summarizing the existing literature, this review paper can help researchers identify areas for further investigation. This can lead to formulating research questions and developing new studies aimed at improving FES systems and their outcomes in upper limb rehabilitation.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Hoda Fares
- Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| | - Hemant Ghayvat
- Department of Computer Science, Linnaeus University, Växjö, Sweden
| | | | | | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
| | - Kimford Jay Meador
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
7
|
Bates M, Sunderam S. Hand-worn devices for assessment and rehabilitation of motor function and their potential use in BCI protocols: a review. Front Hum Neurosci 2023; 17:1121481. [PMID: 37484920 PMCID: PMC10357516 DOI: 10.3389/fnhum.2023.1121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Various neurological conditions can impair hand function. Affected individuals cannot fully participate in activities of daily living due to the lack of fine motor control. Neurorehabilitation emphasizes repetitive movement and subjective clinical assessments that require clinical experience to administer. Methods Here, we perform a review of literature focused on the use of hand-worn devices for rehabilitation and assessment of hand function. We paid particular attention to protocols that involve brain-computer interfaces (BCIs) since BCIs are gaining ground as a means for detecting volitional signals as the basis for interactive motor training protocols to augment recovery. All devices reviewed either monitor, assist, stimulate, or support hand and finger movement. Results A majority of studies reviewed here test or validate devices through clinical trials, especially for stroke. Even though sensor gloves are the most commonly employed type of device in this domain, they have certain limitations. Many such gloves use bend or inertial sensors to monitor the movement of individual digits, but few monitor both movement and applied pressure. The use of such devices in BCI protocols is also uncommon. Discussion We conclude that hand-worn devices that monitor both flexion and grip will benefit both clinical diagnostic assessment of function during treatment and closed-loop BCI protocols aimed at rehabilitation.
Collapse
Affiliation(s)
- Madison Bates
- Neural Systems Lab, F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
8
|
Ma ZZ, Wu JJ, Hua XY, Zheng MX, Xing XX, Ma J, Shan CL, Xu JG. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol 2023; 14:1135466. [PMID: 37346164 PMCID: PMC10281191 DOI: 10.3389/fneur.2023.1135466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Background Brain-computer interface (BCI) has been widely used for functional recovery after stroke. Understanding the brain mechanisms following BCI intervention to optimize BCI strategies is crucial for the benefit of stroke patients. Methods Forty-six patients with upper limb motor dysfunction after stroke were recruited and randomly divided into the control group or the BCI group. The primary outcome was measured by the assessment of Fugl-Meyer Assessment of Upper Extremity (FMA-UE). Meanwhile, we performed resting-state functional magnetic resonance imaging (rs-fMRI) in all patients, followed by independent component analysis (ICA) to identify functionally connected brain networks. Finally, we assessed the topological efficiency of both groups using graph-theoretic analysis in these brain subnetworks. Results The FMA-UE score of the BCI group was significantly higher than that of the control group after treatment (p = 0.035). From the network topology analysis, we first identified seven subnetworks from the rs-fMRI data. In the following analysis of subnetwork properties, small-world properties including γ (p = 0.035) and σ (p = 0.031) within the visual network (VN) decreased in the BCI group. For the analysis of the dorsal attention network (DAN), significant differences were found in assortativity (p = 0.045) between the groups. Additionally, the improvement in FMA-UE was positively correlated with the assortativity of the dorsal attention network (R = 0.498, p = 0.011). Conclusion Brain-computer interface can promote the recovery of upper limbs after stroke by regulating VN and DAN. The correlation trend of weak intensity proves that functional recovery in stroke patients is likely to be related to the brain's visuospatial processing ability, which can be used to optimize BCI strategies. Clinical Trial Registration The trial is registered in the Chinese Clinical Trial Registry, number ChiCTR2000034848. Registered 21 July 2020.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
| | - Jia-Jia Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Angerhöfer C, Vermehren M, Colucci A, Nann M, Koßmehl P, Niedeggen A, Kim WS, Chang WK, Paik NJ, Hömberg V, Soekadar SR. The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and sensitivity to change in assistive hand exoskeleton application. J Neuroeng Rehabil 2023; 20:17. [PMID: 36707885 PMCID: PMC9881328 DOI: 10.1186/s12984-023-01137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Assistive hand exoskeletons are promising tools to restore hand function after cervical spinal cord injury (SCI) but assessing their specific impact on bimanual hand and arm function is limited due to lack of reliable and valid clinical tests. Here, we introduce the Berlin Bimanual Test for Tetraplegia (BeBiTT) and demonstrate its psychometric properties and sensitivity to assistive hand exoskeleton-related improvements in bimanual task performance. METHODS Fourteen study participants with subacute cervical SCI performed the BeBiTT unassisted (baseline). Thereafter, participants repeated the BeBiTT while wearing a brain/neural hand exoskeleton (B/NHE) (intervention). Online control of the B/NHE was established via a hybrid sensorimotor rhythm-based brain-computer interface (BCI) translating electroencephalographic (EEG) and electrooculographic (EOG) signals into open/close commands. For reliability assessment, BeBiTT scores were obtained by four independent observers. Besides internal consistency analysis, construct validity was assessed by correlating baseline BeBiTT scores with the Spinal Cord Independence Measure III (SCIM III) and Quadriplegia Index of Function (QIF). Sensitivity to differences in bimanual task performance was assessed with a bootstrapped paired t-test. RESULTS The BeBiTT showed excellent interrater reliability (intraclass correlation coefficients > 0.9) and internal consistency (α = 0.91). Validity of the BeBiTT was evidenced by strong correlations between BeBiTT scores and SCIM III as well as QIF. Wearing a B/NHE (intervention) improved the BeBiTT score significantly (p < 0.05) with high effect size (d = 1.063), documenting high sensitivity to intervention-related differences in bimanual task performance. CONCLUSION The BeBiTT is a reliable and valid test for evaluating bimanual task performance in persons with tetraplegia, suitable to assess the impact of assistive hand exoskeletons on bimanual function.
Collapse
Affiliation(s)
- Cornelius Angerhöfer
- grid.6363.00000 0001 2218 4662Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Neurowissenschaftliches Forschungszentrum (NWFZ), Charité-Universitätsmedizin Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin, Germany
| | - Mareike Vermehren
- grid.6363.00000 0001 2218 4662Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Neurowissenschaftliches Forschungszentrum (NWFZ), Charité-Universitätsmedizin Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin, Germany
| | - Annalisa Colucci
- grid.6363.00000 0001 2218 4662Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Neurowissenschaftliches Forschungszentrum (NWFZ), Charité-Universitätsmedizin Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin, Germany
| | - Marius Nann
- grid.6363.00000 0001 2218 4662Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Neurowissenschaftliches Forschungszentrum (NWFZ), Charité-Universitätsmedizin Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Koßmehl
- Kliniken Beelitz GmbH, Paracelsusring 6A, Beelitz-Heilstätten, 14547 Beelitz, Germany
| | - Andreas Niedeggen
- Kliniken Beelitz GmbH, Paracelsusring 6A, Beelitz-Heilstätten, 14547 Beelitz, Germany
| | - Won-Seok Kim
- grid.412480.b0000 0004 0647 3378Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Gyeonggi-do 13620 Seongnam-si, Republic of Korea
| | - Won Kee Chang
- grid.412480.b0000 0004 0647 3378Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Gyeonggi-do 13620 Seongnam-si, Republic of Korea
| | - Nam-Jong Paik
- grid.412480.b0000 0004 0647 3378Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Gyeonggi-do 13620 Seongnam-si, Republic of Korea
| | - Volker Hömberg
- SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Germany
| | - Surjo R. Soekadar
- grid.6363.00000 0001 2218 4662Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Neurowissenschaftliches Forschungszentrum (NWFZ), Charité-Universitätsmedizin Berlin, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
10
|
Colucci A, Vermehren M, Cavallo A, Angerhöfer C, Peekhaus N, Zollo L, Kim WS, Paik NJ, Soekadar SR. Brain-Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not? Neurorehabil Neural Repair 2022; 36:747-756. [PMID: 36426541 PMCID: PMC9720703 DOI: 10.1177/15459683221138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of brain-computer interface-controlled exoskeletons promises new treatment strategies for neurorehabilitation after stroke or spinal cord injury. By converting brain/neural activity into control signals of wearable actuators, brain/neural exoskeletons (B/NEs) enable the execution of movements despite impaired motor function. Beyond the use as assistive devices, it was shown that-upon repeated use over several weeks-B/NEs can trigger motor recovery, even in chronic paralysis. Recent development of lightweight robotic actuators, comfortable and portable real-world brain recordings, as well as reliable brain/neural control strategies have paved the way for B/NEs to enter clinical care. Although B/NEs are now technically ready for broader clinical use, their promotion will critically depend on early adopters, for example, research-oriented physiotherapists or clinicians who are open for innovation. Data collected by early adopters will further elucidate the underlying mechanisms of B/NE-triggered motor recovery and play a key role in increasing efficacy of personalized treatment strategies. Moreover, early adopters will provide indispensable feedback to the manufacturers necessary to further improve robustness, applicability, and adoption of B/NEs into existing therapy plans.
Collapse
Affiliation(s)
- Annalisa Colucci
- Clinical Neurotechnology Laboratory, Neurowissenschaftliches Forschungszentrum (NWFZ), Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Mareike Vermehren
- Clinical Neurotechnology Laboratory, Neurowissenschaftliches Forschungszentrum (NWFZ), Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Neurowissenschaftliches Forschungszentrum (NWFZ), Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Cornelius Angerhöfer
- Clinical Neurotechnology Laboratory, Neurowissenschaftliches Forschungszentrum (NWFZ), Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Niels Peekhaus
- Clinical Neurotechnology Laboratory, Neurowissenschaftliches Forschungszentrum (NWFZ), Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Loredana Zollo
- Unit of Advanced Robotics and Human-Centred Technologies (CREO Lab), University Campus Bio-Medico of Rome, Roma RM, Italy
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Surjo R. Soekadar
- Clinical Neurotechnology Laboratory, Neurowissenschaftliches Forschungszentrum (NWFZ), Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany,Surjo R. Soekadar, Charité Universitatsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany.
| |
Collapse
|
11
|
Baldassarre A, Lulli LG, Cavallo F, Fiorini L, Mariniello A, Mucci N, Arcangeli G. Industrial exoskeletons from bench to field: Human-machine interface and user experience in occupational settings and tasks. Front Public Health 2022; 10:1039680. [PMID: 36478728 PMCID: PMC9720272 DOI: 10.3389/fpubh.2022.1039680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Work-related musculoskeletal disorders (WRMSDs) are considered nowadays the most serious issue in the Occupational Health and Safety field and industrial exoskeletons appear to be a new approach to addressing this medical burden. A systematic review has been carried out to analyze the real-life data of the application of exoskeletons in work settings considering the subjective responses of workers. Methods The review was registered on PROSPERO. The literature search and its report have been performed following the PRISMA guidelines. A comprehensive literature search was performed in PubMed, EMBASE, Web of Science, and Scopus. Results Twenty-four original studies were included in the literature review; 42% of the papers retrieved included automobilist industry workers, 17% of the studies evaluated the use of exoskeletons in logistic facilities, and 17% of articles involved healthcare. The remaining six papers recruited farmers, plasterers, wasting collectors, construction workers, and other workmen. All the papers selected tested the use of passive exoskeletons, supporting upper arms or back. Usability, perceived comfort, perceived exertion and fatigue, acceptability and intention to use, occupational safety and health, and job performance and productivity were the main topic analyzed. Conclusion Exoskeletons are not a fix-all technology, neither for workers nor for job tasks; they tend to show more of their potential in static activities, while in dynamic tasks, they can obstacle regular job performance. Comfort and easiness of use are the key factors influencing the user's experience. More research is needed to determine the most effective and safe ways to implement exoskeleton use in occupational settings. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=275728, identifier CRD42021275728.
Collapse
Affiliation(s)
- Antonio Baldassarre
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lucrezia Ginevra Lulli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Filippo Cavallo
- Department of Industrial Engineering, University of Florence, Florence, Italy
| | - Laura Fiorini
- Department of Industrial Engineering, University of Florence, Florence, Italy
| | | | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Ultrasound-Guided Median Nerve Electrical Stimulation to Promote Upper Limb Function Recovery after Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3590057. [PMID: 35873627 PMCID: PMC9303480 DOI: 10.1155/2022/3590057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Peripheral electrical nerve stimulation enhances hand function during stroke rehabilitation. Here, we proposed a percutaneous direct median nerve stimulation guided by ultrasound (ultrasound‐guided median nerve electrical stimulation, UG-MNES) and evaluated its feasibility and effectiveness in the treatment of stroke patients with upper limb extremity impairments. Sixty-three stroke patients (2-3 months of onset) were randomly divided into control and UG-MNES groups. Both groups received routine rehabilitation and the UG-MNES group received an additional ultrasound-guided electrical stimulation of the median nerve at 2 Hz, 0.2 ms pulse-width for 20 minutes with gradual intensity enhancement. The Fugl-Meyer Assessment for upper extremity motor function (FMA-UE) was used as the primary outcome. The secondary outcomes were the Functional Test for the Hemiplegic Upper Extremity (FTHUE-HK), Hand Function Rating Scale, Brunnstrom Stages, and Barthel Index scores for motor and daily functions. All the participants completed the trial without any side effects or adverse events during the intervention. After 4 weeks of intervention, the functions of the upper limbs on the hemiplegic side in both groups achieved significant recovery. Compared to the control group, all evaluation indices used in this trial were improved significantly in the UG-MNES group after 2 and 4 weeks of intervention; particularly, the first intervention of UG-MNES immediately improved all the assessment items significantly. In conclusion, the UG-MNES is a safe and feasible treatment for stroke patients with upper limb extremity impairments and could significantly improve the motor function of the affected upper limb, especially in the first intervention. The UG-MNES could be an effective alternative intervention for stroke with upper limb extremity impairments.
Collapse
|