1
|
Quinn JF, Gray NE. Fluid Biomarkers in Dementia Diagnosis. Continuum (Minneap Minn) 2024; 30:1790-1800. [PMID: 39620844 DOI: 10.1212/con.0000000000001497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This article familiarizes neurologists with the currently available CSF and plasma biomarkers for the diagnosis of dementia and diagnosis-dependent treatment decisions. LATEST DEVELOPMENTS For Alzheimer disease, the recent US Food and Drug Administration (FDA) approval of monoclonal antibody therapy has increased the urgency of confirming the pathologic diagnosis with biomarkers before initiating therapy. The new availability of disease-modifying therapies also highlights the need for biomarkers to monitor efficacy over time. Both of these needs have been partially addressed by the emergence of improved blood-based biomarkers for Alzheimer disease. Regarding other forms of dementia, the latest development is a CSF assay for aggregated α-synuclein, which permits the biomarker confirmation of synuclein pathology in Lewy body dementia. ESSENTIAL POINTS CSF biomarkers for the diagnosis of Alzheimer disease, Lewy body dementia, and Creutzfeldt-Jakob disease are well established. Blood-based biomarkers for dementia diagnosis are emerging and rapidly evolving. Sensitivity and specificity for diagnosis continue to improve, and they are being incorporated into diagnostic decisions. Fluid biomarkers for monitoring the efficacy of therapy are not yet established. Because serial CSF examinations are impractical, the validation of blood-based biomarkers of disease activity will be critical for addressing this unmet need.
Collapse
|
2
|
Kaya D, Yesil Gurel BH, Akpinar Soylemez B, Dost FS, Dokuzlar O, Mutlay F, Ates Bulut E, Petek K, Golimstok AB, Isik AT. Validity and reliability of the Turkish version of the ALBA screening instrument for Lewy body dementia in older adults. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1457-1462. [PMID: 36332080 DOI: 10.1080/23279095.2022.2142793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ALBA screening instrument (ASI) has been demonstrated to be an effective, cheap, and noninvasive clinical instrument to screen for Lewy body dementia (LBD). We aimed to determine the validity and reliability of the Turkish version of ASI (ASI-T) in patients with LBD and to investigate the discriminative power of the test in patients with Alzheimer's Disease (AD), LBD, and cognitively healthy older adults (controls). 172 older adults over 60 years of age (43 with LBD, 41 AD, and 88 controls) were included. The sensitivity and specificity of the instrument were determined. A significant difference was found in ASI-T total score between people with LBD versus the controls (t=-9.259; p < 0.001), and versus patients with AD (t = 3.490; p = 0.001). Internal consistency of the ASI-T was good(Cronbach's alpha = 0.81). The cutoff score of 7 showed sensitivity (86%) and specificity (81%) (AUC= 0.888,CI0.95, p < 0.001) compared to controls. Also, compared to AD, it showed sensitivity (86%) and specificity(70%) (AUC = 0.590,CI .95, p < 0.001). Moreover, ASI-T demonstrated a significant concurrent validity with MMSE (r = -0.62; p < 0.001) and MoCA (r = -0.54; p = 0.003). In factor analysis, the five subscales accounted for 60% of the total variance. Our findings suggested that the ASI-T is a reliable, valid, and effective instrument for screening LBD. With acceptable psychometric properties, it has the power to distinguish patients with LBD from controls or those with AD.
Collapse
Affiliation(s)
- Derya Kaya
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- The Geriatric Science Association, Izmir, Turkey
| | | | - Burcu Akpinar Soylemez
- Department of Internal Medicine Nursing, Faculty of Nursing, Dokuz Eylul University, Izmir, Turkey
| | - Fatma Sena Dost
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- The Geriatric Science Association, Izmir, Turkey
| | | | - Feyza Mutlay
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- The Geriatric Science Association, Izmir, Turkey
| | - Esra Ates Bulut
- The Geriatric Science Association, Izmir, Turkey
- Department of Geriatric Medicine, Adana City Research and Training Hospital, Adana, Turkey
| | - Kadriye Petek
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Angel Bernardo Golimstok
- Neurology Department of Italian Hospital of Buenos Aires, Buenos Aires, Argentina
- Lewy Body Association Argentina (ALBA), Buenos Aires, Argentina
| | - Ahmet Turan Isik
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- The Geriatric Science Association, Izmir, Turkey
| |
Collapse
|
3
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
4
|
Shantaraman A, Dammer EB, Ugochukwu O, Duong DM, Yin L, Carter EK, Gearing M, Chen-Plotkin A, Lee EB, Trojanowski JQ, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Higginbotham L. Network proteomics of the Lewy body dementia brain reveals presynaptic signatures distinct from Alzheimer's disease. Mol Neurodegener 2024; 19:60. [PMID: 39107789 PMCID: PMC11302177 DOI: 10.1186/s13024-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.
Collapse
Affiliation(s)
- Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Obiadada Ugochukwu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - E Kathleen Carter
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - James J Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Lenora Higginbotham
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Pillai JA, Bena J, Tousi B, Rothenberg K, Keene CD, Leverenz JB. Lewy body pathology modifies risk factors for cerebral amyloid angiopathy when comorbid with Alzheimer's disease pathology. Alzheimers Dement 2024; 20:2564-2574. [PMID: 38353367 PMCID: PMC11032524 DOI: 10.1002/alz.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
INTRODUCTION Cerebral amyloid angiopathy (CAA) often accompanies dementia-associated pathologies and is important in the context of anti-amyloid monoclonal therapies and risk of hemorrhage. METHODS We conducted a retrospective neuropathology-confirmed study of 2384 participants in the National Alzheimer Coordinating Center cohort (Alzheimer's disease [AD], n = 1175; Lewy body pathology [LBP], n = 316; and mixed AD and LBP [AD-LBP], n = 893). We used logistic regression to evaluate age, sex, education, APOE ε4, neuritic plaques, and neurofibrillary tangles (NFTs) in CAA risk. RESULTS APOE ε4 increased CAA risk in all three groups, while younger age and higher NFT stages increased risk in AD and AD-LBP. In AD-LBP, male sex and lower education were additional risk factors. The odds of APOE ε4 carrier homozygosity related to CAA was higher in LBP (25.69) and AD-LBP (9.50) than AD (3.17). DISCUSSION AD and LBPs modify risk factors for CAA and should be considered in reviewing the risk of CAA. HIGHLIGHTS Lewy body pathology modifies risk factors for cerebral amyloid angiopathy (CAA) when present along with Alzheimer's disease (AD) neuropathology. In the context of anti-amyloid monoclonal therapies and their associated risks for hemorrhage, the risk of underlying CAA in mixed dementia with Lewy body pathology needs to be considered.
Collapse
Affiliation(s)
- Jagan A. Pillai
- Lou Ruvo Center for Brain HealthCleveland ClinicClevelandOhioUSA
- Neurological InstituteCleveland ClinicClevelandOhioUSA
- Department of NeurologyCleveland ClinicClevelandOhioUSA
| | - James Bena
- Quantitative Health SciencesCleveland ClinicClevelandOhioUSA
| | - Babak Tousi
- Lou Ruvo Center for Brain HealthCleveland ClinicClevelandOhioUSA
- Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Kasia Rothenberg
- Lou Ruvo Center for Brain HealthCleveland ClinicClevelandOhioUSA
- Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - C. Dirk Keene
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - James B. Leverenz
- Lou Ruvo Center for Brain HealthCleveland ClinicClevelandOhioUSA
- Neurological InstituteCleveland ClinicClevelandOhioUSA
- Department of NeurologyCleveland ClinicClevelandOhioUSA
| |
Collapse
|
6
|
Cassard L, Honari G, Tousi B. The Skin and Lewy Body Disease. J Alzheimers Dis 2024; 100:761-769. [PMID: 38968048 DOI: 10.3233/jad-240198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This manuscript reviews the significant skin manifestations of Lewy body disease, including Parkinson's disease and dementia with Lewy bodies, and the diagnostic utility of skin biopsy. Besides classic motor and cognitive symptoms, non-motor manifestations, particularly dermatologic disorders, can play a crucial role in disease presentation and diagnosis. This review explores the intricate relationship between the skin and Lewy body disease. Seborrheic dermatitis, autoimmune blistering diseases (bullous pemphigoid and pemphigus), rosacea, and melanoma are scrutinized for their unique associations with Parkinson's disease, revealing potential links through shared pathophysiological mechanisms. Advances in diagnostic techniques allow the identification of promising biomarkers such as α-synuclein in samples obtained by skin punch biopsy. Understanding the dermatologic aspects of Lewy body disease not only contributes to its holistic characterization but also holds implications for innovative diagnostic approaches.
Collapse
Affiliation(s)
- Lydia Cassard
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Golara Honari
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Babak Tousi
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
O’Day DH. Protein Biomarkers Shared by Multiple Neurodegenerative Diseases Are Calmodulin-Binding Proteins Offering Novel and Potentially Universal Therapeutic Targets. J Clin Med 2023; 12:7045. [PMID: 38002659 PMCID: PMC10672630 DOI: 10.3390/jcm12227045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Seven major neurodegenerative diseases and their variants share many overlapping biomarkers that are calmodulin-binding proteins: Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTD), Huntington's disease (HD), Lewy body disease (LBD), multiple sclerosis (MS), and Parkinson's disease (PD). Calcium dysregulation is an early and persistent event in each of these diseases, with calmodulin serving as an initial and primary target of increased cytosolic calcium. Considering the central role of calcium dysregulation and its downstream impact on calcium signaling, calmodulin has gained interest as a major regulator of neurodegenerative events. Here, we show that calmodulin serves a critical role in neurodegenerative diseases via binding to and regulating an abundance of biomarkers, many of which are involved in multiple neurodegenerative diseases. Of special interest are the shared functions of calmodulin in the generation of protein biomarker aggregates in AD, HD, LBD, and PD, where calmodulin not only binds to amyloid beta, pTau, alpha-synuclein, and mutant huntingtin but also, via its regulation of transglutaminase 2, converts them into toxic protein aggregates. It is suggested that several calmodulin binding proteins could immediately serve as primary drug targets, while combinations of calmodulin binding proteins could provide simultaneous insight into the onset and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
8
|
Del Campo M, Vermunt L, Peeters CFW, Sieben A, Hok-A-Hin YS, Lleó A, Alcolea D, van Nee M, Engelborghs S, van Alphen JL, Arezoumandan S, Chen-Plotkin A, Irwin DJ, van der Flier WM, Lemstra AW, Teunissen CE. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease. Nat Commun 2023; 14:5635. [PMID: 37704597 PMCID: PMC10499811 DOI: 10.1038/s41467-023-41122-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Lisa Vermunt
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Juliette L van Alphen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Donaghy PC, Carrarini C, Ferreira D, Habich A, Aarsland D, Babiloni C, Bayram E, Kane JP, Lewis SJ, Pilotto A, Thomas AJ, Bonanni L. Research diagnostic criteria for mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis. Alzheimers Dement 2023; 19:3186-3202. [PMID: 37096339 PMCID: PMC10695683 DOI: 10.1002/alz.13105] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Operationalized research criteria for mild cognitive impairment with Lewy bodies (MCI-LB) were published in 2020. The aim of this systematic review and meta-analysis was to review the evidence for the diagnostic clinical features and biomarkers in MCI-LB set out in the criteria. METHODS MEDLINE, PubMed, and Embase were searched on 9/28/22 for relevant articles. Articles were included if they presented original data reporting the rates of diagnostic features in MCI-LB. RESULTS Fifty-seven articles were included. The meta-analysis supported the inclusion of the current clinical features in the diagnostic criteria. Evidence for striatal dopaminergic imaging and meta-iodobenzylguanidine cardiac scintigraphy, though limited, supports their inclusion. Quantitative electroencephalogram (EEG) and fluorodeoxyglucose positron emission tomography (PET) show promise as diagnostic biomarkers. DISCUSSION The available evidence largely supports the current diagnostic criteria for MCI-LB. Further evidence will help refine the diagnostic criteria and understand how best to apply them in clinical practice and research. HIGHLIGHTS A meta-analysis of the diagnostic features of MCI-LB was carried out. The four core clinical features were more common in MCI-LB than MCI-AD/stable MCI. Neuropsychiatric and autonomic features were also more common in MCI-LB. More evidence is needed for the proposed biomarkers. FDG-PET and quantitative EEG show promise as diagnostic biomarkers in MCI-LB.
Collapse
Affiliation(s)
- Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Carrarini
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, California, USA
| | - Joseph Pm Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Simon Jg Lewis
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
Bayram E, Holden SK, Fullard M, Armstrong MJ. Race and Ethnicity in Lewy Body Dementia: A Narrative Review. J Alzheimers Dis 2023; 94:861-878. [PMID: 37355902 PMCID: PMC10448838 DOI: 10.3233/jad-230207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Lewy body dementia is the third most common and costliest type of dementia. It is an umbrella term for dementia with Lewy bodies and Parkinson's disease dementia, both of which place a substantial burden on the person and society. Recent findings outline ethnoracial differences in dementia risk. Delayed and misdiagnosis across ethnoracial groups contribute to higher levels of burden. In this context, we aimed to summarize current knowledge, gaps, and unmet needs relating to race and ethnicity in Lewy body dementia. In this narrative review, we provide an overview of studies on Lewy body dementia focusing on differences across ethnoracial groups and outline several recommendations for future studies. The majority of the findings comparing different ethnoracial groups were from North American sites. There were no differences in clinical prevalence and progression across ethnoracial groups. Compared to people identifying as non-Hispanic White, co-pathologies were more common and clinical diagnostic accuracy was lower for people identifying as Black. Co-morbidities (e.g., diabetes, hypertension) were more common and medication use rates (e.g., antidepressants, antiparkinsonian agents) were lower for people identifying as Black or Hispanic compared to people identifying as White. More than 90% of clinical trial participants identified as non-Hispanic White. Despite increasing efforts to overcome disparities in Alzheimer's disease and related dementias, inclusion of individuals from minoritized communities in Lewy body dementia studies continues to be limited and the findings are inconclusive. Representation of diverse populations is crucial to improve the diagnostic and therapeutic efforts in Lewy body dementia.
Collapse
Affiliation(s)
- Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Samantha K Holden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michelle Fullard
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melissa J Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| |
Collapse
|
12
|
Babiloni C. The Dark Side of Alzheimer's Disease: Neglected Physiological Biomarkers of Brain Hyperexcitability and Abnormal Consciousness Level. J Alzheimers Dis 2022; 88:801-807. [PMID: 35754282 DOI: 10.3233/jad-220582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| |
Collapse
|
13
|
Foska A, Tsantzali I, Sideri E, Stefanou MI, Bakola E, Kitsos DK, Zompola C, Bonakis A, Giannopoulos S, Voumvourakis KI, Tsivgoulis G, Paraskevas GP. Classical Cerebrospinal Fluid Biomarkers in Dementia with Lewy Bodies. Medicina (B Aires) 2022; 58:medicina58050612. [PMID: 35630029 PMCID: PMC9144333 DOI: 10.3390/medicina58050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.
Collapse
|