1
|
Reis J, Spencer PS. An introduction to environmental neurotoxicology: Lessons from a clinical perspective. J Neurol Sci 2024; 463:123108. [PMID: 38991324 DOI: 10.1016/j.jns.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking. After defining keys words, namely Environment, Neurotoxicology and Neurotoxicants, we present some demonstrative cases; e.g., the Epidemic Neuropathy in Cuba, Minamata disease, ALS/PDC on Guam, and the ALS hot spot in the French Alps. Always with a clinical and practical approach, we will then review the milieux that contain and convey potential neurotoxicants, the different exposure routes and the clinical presentations. Drawing lessons from clinical cases, we offer some thoughts concerning the future of Environmental Neurotoxicology (ENT). Pointing notably to the diffuse chemical contamination of ecosystems and living beings, including Homo sapiens, we question the real impact of agents with neurotoxic potential on the human brain, considering the effects, for example, of air pollution, endocrine disruptors and nanoparticles. Concern is expressed over the lack of knowledge of the non-monotonic kinetics of many of these chemicals, the major concern being related to mixtures and low-dose exposures, as well as the delayed appearance in clinical expression of prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- J Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - P S Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Zhu Q, Zhou J, Zhang Y, Huang H, Han J, Cao B, Xu D, Zhao Y, Chen G. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: a systematic review and meta-analysis. Front Neurosci 2023; 17:1196722. [PMID: 37284659 PMCID: PMC10239956 DOI: 10.3389/fnins.2023.1196722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the upper and lower motor neurons. Though the pathogenesis of ALS is still unclear, exploring the associations between risk factors and ALS can provide reliable evidence to find the pathogenesis. This meta-analysis aims to synthesize all related risk factors of ALS to understand this disease comprehensively. Methods We searched the following databases: PubMed, EMBASE, Cochrane library, Web of Science, and Scopus. Moreover, observational studies, including cohort studies, and case-control studies, were included in this meta-analysis. Results A total of 36 eligible observational studies were included, and 10 of them were cohort studies and the rest were case-control studies. We found six factors exacerbated the progression of disease: head trauma (OR = 1.26, 95% CI = 1.13, 1.40), physical activity (OR = 1.06, 95% CI = 1.04, 1.09), electric shock (OR = 2.72, 95% CI = 1.62, 4.56), military service (OR = 1.34, 95% CI = 1.11, 1.61), pesticides (OR = 1.96, 95% CI = 1.7, 2.26), and lead exposure (OR = 2.31, 95% CI = 1.44, 3.71). Of note, type 2 diabetes mellitus was a protective factor for ALS. However, cerebrovascular disease (OR = 0.99, 95% CI = 0.75, 1.29), agriculture (OR = 1.22, 95% CI = 0.74, 1.99), industry (OR = 1.24, 95% CI = 0.81, 1.91), service (OR = 0.47, 95% CI = 0.19, 1.17), smoking (OR = 1.25, 95% CI = 0.5, 3.09), chemicals (OR = 2.45, 95% CI = 0.89, 6.77), and heavy metal (OR = 1.5, 95% CI = 0.47, 4.84) were not risk factors for ALS based on meta-analyses. Conclusions Head trauma, physical activity, electric shock, military service, pesticides, and lead were risk factors for ALS onset and progression. But DM was a protective factor. This finding provides a better understanding of ALS risk factors with strong evidence for clinicians to rationalize clinical intervention strategies. INPLSY registration number https://inplasy.com/inplasy-2022-9-0118/, INPLASY202290118.
Collapse
Affiliation(s)
- Qiaochu Zhu
- Department of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Zhou
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yijie Zhang
- School of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Hai Huang
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Jie Han
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Biwei Cao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Dandan Xu
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Yan Zhao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Gang Chen
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|