1
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
2
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2024:oyae227. [PMID: 39401002 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke's Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
3
|
Ling G, Guo T, Guo F, Piao H. Effectiveness and Safety of Ultra-low-dose Fluorescein Sodium-Guided Resection of Malignant Glioma. World Neurosurg 2024; 185:e774-e785. [PMID: 38432505 DOI: 10.1016/j.wneu.2024.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND This study analyzed the effectiveness and safety of ultra-low dose fluorescein sodium (FL)-guided malignant glioma resection and its potential to predict the pathological characteristics of glioma. METHODS Sixty patients who underwent FL-guided glioma resection were randomly divided into test (1 mg/kg) and control (5 mg/kg) groups. A retrospective analysis included 30 patients with gliomas who did not undergo FL-guided surgery; these patients were included as a blank control group. Surgical outcomes, Karnofsky performance scores (KPS), and progression-free survival (PFS) at 6 months postoperatively were compared between the 3 groups. The sensitivity and specificity of FL and the relationship between the intensity of FL and Glial fibrillary acidic protein (GFAP) or Ki-67 expression were compared. RESULTS The total tumor resection rates in the test, control, and blank control groups were 90% (27/30), 86.7% (26/30), and 60% (18/30), respectively. There were significant differences (P < 0.05) in the extent of resection, KPS, and PFS at 6 months after surgery between the test and control groups and the blank control group; however, no significant differences (P > 0.05) were observed between the test and control groups. The intensity of FL and the Ki67 positivity rate (P < 0.05) were directly proportional, but this relationship was not observed with GFAP. CONCLUSIONS Ultra-low-dose FL-guided resection of malignant gliomas is safe and effective. The Ki67 positivity rate was directly proportional to the intensity of FL, indicating its potential to predict gliomas during pathological examination.
Collapse
Affiliation(s)
- Guoyuan Ling
- Graduate School, Dalian Medical University, Liaoning Province, China; Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
5
|
Sharifian A, Kazemian A, Farzin M, Amirkhani N, Farazmand B, Naderi S, Khalilian A, Pourrashidi A, Amjad G, Kolahdouzan K, Abyaneh R, Jablonska PA, Ghalehtaki R. Postoperative NEOadjuvant TEMozolomide followed by chemoradiotherapy versus upfront chemoradiotherapy for glioblastoma multiforme (NEOTEM) trial: Interim results. Neurooncol Adv 2024; 6:vdae195. [PMID: 39664679 PMCID: PMC11632829 DOI: 10.1093/noajnl/vdae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor survival rates despite current treatments. The standard of care (SOC) includes surgery, followed by radiotherapy plus concurrent and adjuvant chemotherapy with temozolomide (TMZ). This phase II trial assessed the safety and efficacy of neoadjuvant TMZ (nTMZ) before and during chemoradiotherapy in newly diagnosed GBM patients. Methods Newly diagnosed GBM patients who underwent maximal safe resection were randomized into 2 groups. One received nTMZ before standard chemoradiotherapy and adjuvant TMZ (intervention). The other received standard chemoradiotherapy followed by adjuvant TMZ (control). Primary endpoints were progression-free survival (PFS) at 6 and 12 months. Secondary endpoints included overall survival, radiological and clinical responses, and adverse events. Results Of 35 patients, 16 were in the intervention group and 19 in the control group. Median PFS was 9 months (95% CI: 3.93-14.06) versus 3 months (95% confidence interval [CI]: 1.98-4.01) in the control and intervention groups (P = .737), with a high progression rate (73.4%) during nTMZ treatment. The 6-month PFS rates were 58% versus 25% (P = .042), and 12-month PFS rates were 26% versus 25% (P = .390) in the control and intervention groups, respectively. Patients with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) and those with good performance status (PS) had significantly worse PFS with nTMZ. However, those who underwent larger extent of resection exhibited significantly better PFS with nTMZ. Adverse events were similar between groups. Conclusions Neoadjuvant TMZ before SOC chemoradiotherapy did not improve outcomes for newly diagnosed GBM patients and is unsuitable for those with unmethylated MGMT and good PS. However, It may benefit patients with near or gross total resection. Further research is needed to refine GBM treatment strategies.
Collapse
Affiliation(s)
- Azadeh Sharifian
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kazemian
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Farzin
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikan Amirkhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borna Farazmand
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Naderi
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khalilian
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pourrashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Amjad
- UPMC Hillman Cancer Center, Radiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kasra Kolahdouzan
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Abyaneh
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Paola Anna Jablonska
- Radiation Oncology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Colamaria A, Leone A, Fochi NP, Di Napoli V, Giordano G, Landriscina M, Patel K, Carbone F. Tumor treating fields for the treatment of glioblastoma: Current understanding and future perspectives. Surg Neurol Int 2023; 14:394. [PMID: 38053701 PMCID: PMC10695468 DOI: 10.25259/sni_674_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Background This review focuses on the recently published evidence on tumor treating fields (TTFields) administered alone or in combination with locoregional and systemic options for treating glioblastoma (GBM) in the past ten years. The aim is to critically summarize the novelty and results obtained with this innovative tool, which is becoming part of the armamentarium of neurosurgeons and neuro-oncologists. Methods A comprehensive search and analysis were conducted on pivotal studies published in the past ten years. Furthermore, all completed clinical trials, whose results were published on clinicaltrials.gov, were examined and included in the present review, encompassing both recurrent (r) and newly diagnosed (n) GBM. Finally, an additional examination of the ongoing clinical trials was also conducted. Results Recent trials have shown promising results both in patients with nGBM and rGBM/progressive (rGBM), leading to Food and Drug Administration approval in selected patients and the Congress of Neurological Surgeons to include TTFields into current guidelines on the management of GBM (P100034/S001-029). Recently, different randomized trials have demonstrated promising results of TTFields in combination with standard treatment of n- and rGBM, especially when considering progression-free and overall survival, maintaining a low rate of mild to moderate adverse events. Conclusion Optimal outcomes were obtained in nGBM and progressive disease. A possible future refinement of TTFields could significantly impact the treatment of rGBM and the actual standard of care for GBM, given the better safety profile and survival effects.
Collapse
Affiliation(s)
| | - Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | | | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Foggia, Italy
| | - Kashyap Patel
- Department of Neurosurgery, Baroda Medical College, Vadodara, Gujarat, India
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| |
Collapse
|
7
|
Ballo MT, Conlon P, Lavy-Shahaf G, Kinzel A, Vymazal J, Rulseh AM. Association of Tumor Treating Fields (TTFields) therapy with survival in newly diagnosed glioblastoma: a systematic review and meta-analysis. J Neurooncol 2023; 164:1-9. [PMID: 37493865 PMCID: PMC10462574 DOI: 10.1007/s11060-023-04348-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE Tumor Treating Fields (TTFields) therapy, an electric field-based cancer treatment, became FDA-approved for patients with newly diagnosed glioblastoma (GBM) in 2015 based on the randomized controlled EF-14 study. Subsequent approvals worldwide and increased adoption over time have raised the question of whether a consistent survival benefit has been observed in the real-world setting, and whether device usage has played a role. METHODS We conducted a literature search to identify clinical studies evaluating overall survival (OS) in TTFields-treated patients. Comparative and single-cohort studies were analyzed. Survival curves were pooled using a distribution-free random-effects method. RESULTS Among nine studies, seven (N = 1430 patients) compared the addition of TTFields therapy to standard of care (SOC) chemoradiotherapy versus SOC alone and were included in a pooled analysis for OS. Meta-analysis of comparative studies indicated a significant improvement in OS for patients receiving TTFields and SOC versus SOC alone (HR: 0.63; 95% CI 0.53-0.75; p < 0.001). Among real-world post-approval studies, the pooled median OS was 22.6 months (95% CI 17.6-41.2) for TTFields-treated patients, and 17.4 months (95% CI 14.4-21.6) for those not receiving TTFields. Rates of gross total resection were generally higher in the real-world setting, irrespective of TTFields use. Furthermore, for patients included in studies reporting data on device usage (N = 1015), an average usage rate of ≥ 75% was consistently associated with prolonged survival (p < 0.001). CONCLUSIONS Meta-analysis of comparative TTFields studies suggests survival may be improved with the addition of TTFields to SOC for patients with newly diagnosed GBM.
Collapse
Affiliation(s)
- Matthew T Ballo
- Department of Radiation Oncology, West Cancer Center, Germantown, TN, USA
| | | | | | | | | | | |
Collapse
|
8
|
Szasz AM, Arrojo Alvarez EE, Fiorentini G, Herold M, Herold Z, Sarti D, Dank M. Meta-Analysis of Modulated Electro-Hyperthermia and Tumor Treating Fields in the Treatment of Glioblastomas. Cancers (Basel) 2023; 15:cancers15030880. [PMID: 36765840 PMCID: PMC9913117 DOI: 10.3390/cancers15030880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most difficult to treat and most aggressive brain tumors, having a poor survival rate. The use of non-invasive modulated electro-hyperthermia (mEHT) and Tumor Treating Fields (TTF) devices has been introduced in the last few decades, both of which having proven anti-tumor effects. METHODS A meta-analysis of randomized and observational studies about mEHT and TTF was conducted. RESULTS A total of seven and fourteen studies about mEHT and TTF were included, with a total number of 450 and 1309 cases, respectively. A 42% [95% confidence interval (95% CI): 25-59%] 1-year survival rate was found for mEHT, which was raised to 61% (95% CI: 32-89%) if only the studies conducted after 2008 were investigated. In the case of TTF, 1-year survival was 67% (95% CI: 53-81%). Subgroup analyses revealed that newly diagnosed patients might get extra benefits from the early introduction of the devices (mEHT all studies: 73% vs. 37%, p = 0.0021; mEHT studies after 2008: 73% vs. 54%, p = 0.4214; TTF studies: 83% vs. 52%, p = 0.0083), compared with recurrent glioblastoma. CONCLUSIONS Our meta-analysis showed that both mEHT and TTF can improve glioblastoma survival, and the most benefit may be achieved in newly diagnosed cases.
Collapse
Affiliation(s)
- Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-459-1500
| | - Elisabeth Estefanía Arrojo Alvarez
- Oncología Radioterápica, Servicios y Unidades Asistenciales, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- Medical Institute of Advanced Oncology, 28037 Madrid, Spain
| | - Giammaria Fiorentini
- Department of Oncology, Azienda Ospedaliera “Ospedali Riuniti Marche Nord”, 61121 Pesaro, Italy
- IHF Integrative Oncology Outpatient Clinic, 40121 Bologna, Italy
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | - Donatella Sarti
- Department of Oncology, Azienda Ospedaliera “Ospedali Riuniti Marche Nord”, 61121 Pesaro, Italy
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|