1
|
Bordoloi S, Gupta CN, Hazarika SM. Understanding effects of observing affordance-driven action during motor imagery through EEG analysis. Exp Brain Res 2024; 242:2473-2485. [PMID: 39180699 DOI: 10.1007/s00221-024-06912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The aim of this paper is to investigate the impact of observing affordance-driven action during motor imagery. Affordance-driven action refers to actions that are initiated based on the properties of objects and the possibilities they offer for interaction. Action observation (AO) and motor imagery (MI) are two forms of motor simulation that can influence motor responses. We examined combined AO + MI, where participants simultaneously engaged in AO and MI. Two different kinds of combined AO + MI were employed. Participants imagined and observed the same affordance-driven action during congruent AO + MI, whereas in incongruent AO + MI, participants imagined the actual affordance-driven action while observing a distracting affordance involving the same object. EEG data were analyzed for the N2 component of event-related potential (ERP). Our study found that the N2 ERP became more negative during congruent AO + MI, indicating strong affordance-related activity. The maximum source current density (0.00611 μ A/mm2 ) using Low-Resolution Electromagnetic Tomography (LORETA) was observed during congruent AO + MI in brain areas responsible for planning motoric actions. This is consistent with prefrontal cortex and premotor cortex activity for AO + MI reported in the literature. The stronger neural activity observed during congruent AO + MI suggests that affordance-driven actions hold promise for neurorehabilitation.
Collapse
Affiliation(s)
- Supriya Bordoloi
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Cota Navin Gupta
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Neural Engineering Lab, Department of Bio Sciences and Bio Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shyamanta M Hazarika
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Biomimetic Robotics and Artificial Intelligence Lab, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Ren C, Li X, Gao Q, Pan M, Wang J, Yang F, Duan Z, Guo P, Zhang Y. The effect of brain-computer interface controlled functional electrical stimulation training on rehabilitation of upper limb after stroke: a systematic review and meta-analysis. Front Hum Neurosci 2024; 18:1438095. [PMID: 39391265 PMCID: PMC11464471 DOI: 10.3389/fnhum.2024.1438095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Several clinical studies have demonstrated that brain-computer interfaces (BCIs) controlled functional electrical stimulation (FES) facilitate neurological recovery in patients with stroke. This review aims to evaluate the effectiveness of BCI-FES training on upper limb functional recovery in stroke patients. Methods PubMed, Embase, Cochrane Library, Science Direct and Web of Science were systematically searched from inception to October 2023. Randomized controlled trials (RCTs) employing BCI-FES training were included. The methodological quality of the RCTs was assessed using the PEDro scale. Meta-analysis was conducted using RevMan 5.4.1 and STATA 18. Results The meta-analysis comprised 290 patients from 10 RCTs. Results showed a moderate effect size in upper limb function recovery through BCI-FES training (SMD = 0.50, 95% CI: 0.26-0.73, I2 = 0%, p < 0.0001). Subgroup analysis revealed that BCI-FES training significantly enhanced upper limb motor function in BCI-FES vs. FES group (SMD = 0.37, 95% CI: 0.00-0.74, I2 = 21%, p = 0.05), and the BCI-FES + CR vs. CR group (SMD = 0.61, 95% CI: 0.28-0.95, I2 = 0%, p = 0.0003). Moreover, BCI-FES training demonstrated effectiveness in both subacute (SMD = 0.56, 95% CI: 0.25-0.87, I2 = 0%, p = 0.0004) and chronic groups (SMD = 0.42, 95% CI: 0.05-0.78, I2 = 45%, p = 0.02). Subgroup analysis showed that both adjusting (SMD = 0.55, 95% CI: 0.24-0.87, I2 = 0%, p = 0.0006) and fixing (SMD = 0.43, 95% CI: 0.07-0.78, I2 = 46%, p = 0.02). BCI thresholds before training significantly improved motor function in stroke patients. Both motor imagery (MI) (SMD = 0.41 95% CI: 0.12-0.71, I2 = 13%, p = 0.006) and action observation (AO) (SMD = 0.73, 95% CI: 0.26-1.20, I2 = 0%, p = 0.002) as mental tasks significantly improved upper limb function in stroke patients. Discussion BCI-FES has significant immediate effects on upper limb function in subacute and chronic stroke patients, but evidence for its long-term impact remains limited. Using AO as the mental task may be a more effective BCI-FES training strategy. Systematic review registration Identifier: CRD42023485744, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023485744.
Collapse
Affiliation(s)
- Chunlin Ren
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qian Gao
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mengyang Pan
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Wang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangjie Yang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenfei Duan
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pengxue Guo
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yasu Zhang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
4
|
Schuster-Amft C, Behrendt F. A commentary on Eaves et al. with a special focus on clinical neurorehabilitation. PSYCHOLOGICAL RESEARCH 2024; 88:1915-1917. [PMID: 38079007 PMCID: PMC11315782 DOI: 10.1007/s00426-023-01901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/20/2023] [Indexed: 07/13/2024]
Abstract
We very much appreciate the theoretical foundations and considerations of AO, MI, and their combination AO + MI by Eaves et al. In their exploratory review, the authors highlight the beneficial effects of the combined use of AO and MI, with a particular focus on synchronous AO and MI. From a neurorehabilitation perspective, different processes may apply to patients, particularly after a stroke. As suggested by Eaves et al., the cognitive load might prevent the use of synchronous AO + MI and the asynchronous application of AO and MI might be indicated. Furthermore, some aspects should be considered when applying AO + MI in rehabilitation: screening for the patients' cognitive capabilities and MI ability, and a familiarisation programme for AO and MI, before starting with an AO + MI training. With their review, Eaves et al. propose a number of research questions in the field of neurorehabilitation that urgently need to be addressed: the use of asynchronous vs. synchronous AOMI, observation and imagination with or without errors, or use of different MI perspectives and modes in different learning stages. This commentary provides some additional suggestions on patients' MI ability and cognitive level, MI familiarisation and detailed reporting recommendations to transfer Eaves et al. findings into clinical practice.
Collapse
Affiliation(s)
- Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland
- Department of Sport, Physical Exercise and Health, University of Basel, Basel, Switzerland
| | - Frank Behrendt
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland.
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland.
| |
Collapse
|
5
|
Chye S, Valappil AC, Knight R, Greene A, Shearer D, Frank C, Diss C, Bruton A. Action observation perspective influences the effectiveness of combined action observation and motor imagery training for novices learning an Osoto Gari judo throw. Sci Rep 2024; 14:19990. [PMID: 39198527 PMCID: PMC11358477 DOI: 10.1038/s41598-024-70315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Combined action observation and motor imagery (AOMI) training improves motor skill performance, but limited research has investigated possible moderating factors for this intervention. This study examined the influence of action observation (AO) perspective on the effectiveness of AOMI training for novices learning a 'shadow' Osoto Gari judo throw. Thirty novice participants were randomly assigned to AOMI training that displayed egocentric footage (AOMIEGO) or allocentric footage (AOMIALLO) of the Osoto Gari, or Control training. A motor learning design incorporating pre-test (Day 1), acquisition (Days 2-6), post-test (Day 7), and retention-test (Day 14) was adopted. Motor skill performance, self-efficacy, and mental representation structures were recorded as measures of learning. There were mixed effects for motor skill performance across the three training conditions utilized in this study, with AOMIALLO training significantly reducing error scores for final right hip flexion angle and peak right ankle velocity compared to AOMIEGO training. Self-efficacy increased for all training conditions over time. Both AOMIEGO and AOMIALLO training led to improved functional changes in mental representation structures over time compared to Control training. The findings suggest AOMI training led to improved perceptual-cognitive scaffolding, irrespective of AO perspective, and offer some support for the use of AOMIALLO training to facilitate novice learning of complex, serial motor skills in sport.
Collapse
Affiliation(s)
- Samantha Chye
- School of Life and Health Sciences, University of Roehampton, London, UK
| | | | - Ryan Knight
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Andrew Greene
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - David Shearer
- Faculty of Life Sciences and Education, University of South Wales, Cardiff, UK
| | - Cornelia Frank
- Department of Sports and Movement Science, Osnabrück University, Osnabrück, Germany
| | - Ceri Diss
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adam Bruton
- School of Life and Health Sciences, University of Roehampton, London, UK.
- Department of Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
6
|
Scott MW, Esselaar M, Dagnall N, Denovan A, Marshall B, Deacon AS, Holmes PS, Wright DJ. Development and Validation of the Combined Action Observation and Motor Imagery Ability Questionnaire. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2024:1-14. [PMID: 38714304 DOI: 10.1123/jsep.2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024]
Abstract
Combined use of action observation and motor imagery (AOMI) is an increasingly popular motor-simulation intervention, which involves observing movements on video while simultaneously imagining the feeling of movement execution. Measuring and reporting participant imagery-ability characteristics are essential in motor-simulation research, but no measure of AOMI ability currently exists. Accordingly, the AOMI Ability Questionnaire (AOMI-AQ) was developed to address this gap in the literature. In Study 1, two hundred eleven participants completed the AOMI-AQ and the kinesthetic imagery subscales of the Movement Imagery Questionnaire-3 and Vividness of Motor Imagery Questionnaire-2. Following exploratory factor analysis, an 8-item AOMI-AQ was found to correlate positively with existing motor-imagery measures. In Study 2, one hundred seventy-four participants completed the AOMI-AQ for a second time after a period of 7-10 days. Results indicate a good test-retest reliability for the AOMI-AQ. The new AOMI-AQ measure provides a valid and reliable tool for researchers and practitioners wishing to assess AOMI ability.
Collapse
Affiliation(s)
- Matthew W Scott
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Maaike Esselaar
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Neil Dagnall
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Denovan
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ben Marshall
- Department of Sport and Exercise Sciences, Manchester University, Manchester, United Kingdom
| | - Aimee S Deacon
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Paul S Holmes
- Department of Sport and Exercise Sciences, Manchester University, Manchester, United Kingdom
| | - David J Wright
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
7
|
Watanabe H, Washino S, Ogoh S, Miyamoto N, Kanehisa H, Kato H, Yoshitake Y. Observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery. Eur J Neurosci 2024; 59:1016-1028. [PMID: 38275099 DOI: 10.1111/ejn.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to examine whether observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery (AOMI). Twelve young males performed motor imagery of motor tasks with different difficulties while observing the actions of an expert performer and an expert performer with a swapped face. Motor tasks included bilateral wrist dorsiflexion (EASY) and unilateral two-ball rotating motions (DIFF). During the AOMI of EASY and DIFF, single-pulse transcranial magnetic stimulation was delivered to the left primary motor cortex, and motor-evoked potentials (MEPs) were obtained from the extensor carpi ulnaris and first dorsal interosseous muscles of the right upper limb, respectively. Visual analogue scale (VAS) assessed the subjective similarity of the expert performer with the swapped face in the EASY and DIFF to the participants themselves. The MEP amplitude in DIFF was larger in the observation of the expert performer with the swapped face than that of the expert performer (P = 0.012); however, the corresponding difference was not observed in EASY (P = 1.000). The relative change in the MEP amplitude from observing the action of the expert performer to that of the expert performer with the swapped face was positively correlated with VAS only in DIFF (r = 0.644, P = 0.024). These results indicate that observing the action of an expert performer with the observer's face enhances corticospinal excitability during AOMI, depending on the task difficulty and subjective similarity between the expert performer being observed and the observer.
Collapse
Affiliation(s)
- Hironori Watanabe
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
- Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Sohei Washino
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Chiba, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Naokazu Miyamoto
- Faculty of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroaki Kanehisa
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
| | - Hirokazu Kato
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Yasuhide Yoshitake
- Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Gowen E, Edmonds E, Poliakoff E. Motor imagery in autism: a systematic review. Front Integr Neurosci 2024; 18:1335694. [PMID: 38410719 PMCID: PMC10895877 DOI: 10.3389/fnint.2024.1335694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Motor Imagery (MI) is when an individual imagines performing an action without physically executing that action and is thought to involve similar neural processes used for execution of physical movement. As motor coordination difficulties are common in autistic individuals it is possible that these may affect MI ability. The aim of this systematic review was to assess the current knowledge around MI ability in autistic individuals. Methods A systematic search was conducted for articles published before September 2023, following PRISMA guidance. Search engines were PsycINFO, PubMed, Web of Science, Scopus, Wiley Online Library and PsyArXiv. Inclusion criteria included: (a) Original peer-reviewed and pre-print publications; (b) Autistic and a non-autistic group (c) Implicit or explicit imagery tasks (d) Behavioral, neurophysiological or self-rating measures, (e) Written in the English language. Exclusion criteria were (a) Articles only about MI or autism (b) Articles where the autism data is not presented separately (c) Articles on action observation, recognition or imitation only (d) Review articles. A narrative synthesis of the evidence was conducted. Results Sixteen studies across fourteen articles were included. Tasks were divided into implicit (unconscious) or explicit (conscious) MI. The implicit tasks used either hand (6) or body (4) rotation tasks. Explicit tasks consisted of perspective taking tasks (3), a questionnaire (1) and explicit instructions to imagine performing a movement (2). A MI strategy was apparent for the hand rotation task in autistic children, although may have been more challenging. Evidence was mixed and inconclusive for the remaining task types due to the varied range of different tasks and, measures conducted and design limitations. Further limitations included a sex bias toward males and the hand rotation task only being conducted in children. Discussion There is currently an incomplete understanding of MI ability in autistic individuals. The field would benefit from a battery of fully described implicit and explicit MI tasks, conducted across the same groups of autistic children and adults. Improved knowledge around MI in autistic individuals is important for understanding whether MI techniques may benefit motor coordination in some autistic people.
Collapse
Affiliation(s)
- Emma Gowen
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Eve Edmonds
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ellen Poliakoff
- Division of Psychology, Communication and Human Neuroscience, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Huang Y, Zheng J, Xu B, Li X, Liu Y, Wang Z, Feng H, Cao S. An improved model using convolutional sliding window-attention network for motor imagery EEG classification. Front Neurosci 2023; 17:1204385. [PMID: 37662108 PMCID: PMC10469504 DOI: 10.3389/fnins.2023.1204385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The classification model of motor imagery-based electroencephalogram (MI-EEG) is a new human-computer interface pattern and a new neural rehabilitation assessment method for diseases such as Parkinson's and stroke. However, existing MI-EEG models often suffer from insufficient richness of spatiotemporal feature extraction, learning ability, and dynamic selection ability. Methods To solve these problems, this work proposed a convolutional sliding window-attention network (CSANet) model composed of novel spatiotemporal convolution, sliding window, and two-stage attention blocks. Results The model outperformed existing state-of-the-art (SOTA) models in within- and between-individual classification tasks on commonly used MI-EEG datasets BCI-2a and Physionet MI-EEG, with classification accuracies improved by 4.22 and 2.02%, respectively. Discussion The experimental results also demonstrated that the proposed type token, sliding window, and local and global multi-head self-attention mechanisms can significantly improve the model's ability to construct, learn, and adaptively select multi-scale spatiotemporal features in MI-EEG signals, and accurately identify electroencephalogram signals in the unilateral motor area. This work provided a novel and accurate classification model for MI-EEG brain-computer interface tasks and proposed a feasible neural rehabilitation assessment scheme based on the model, which could promote the further development and application of MI-EEG methods in neural rehabilitation.
Collapse
Affiliation(s)
- Yuxuan Huang
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Jianxu Zheng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Binxing Xu
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Xuhang Li
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Yu Liu
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Zijian Wang
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiqi Cao
- Department of Orthopaedics of TCM Clinical Unit, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|