1
|
Roseman M, Elias U, Kletenik I, Ferguson MA, Fox MD, Horowitz Z, Marshall GA, Spiers HJ, Arzy S. A neural circuit for spatial orientation derived from brain lesions. Cereb Cortex 2024; 34:bhad486. [PMID: 38100330 PMCID: PMC10793567 DOI: 10.1093/cercor/bhad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.
Collapse
Affiliation(s)
- Moshe Roseman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Uri Elias
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Isaiah Kletenik
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Zalman Horowitz
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gad A Marshall
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|