1
|
Boesl F, Goereci Y, Schweitzer F, Finke C, Schild AK, Bittner S, Steffen F, Schröder M, Quitschau A, Heine J, Warnke C, Franke C. Cognitive decline in post-COVID-19 syndrome does not correspond with persisting neuronal or astrocytic damage. Sci Rep 2024; 14:5326. [PMID: 38438479 PMCID: PMC10912552 DOI: 10.1038/s41598-024-55881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Cognitive impairment is the most frequent symptom reported in post-COVID-19 syndrome (PCS). Aetiology of cognitive impairment in PCS is still to be determined. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are increased in acute COVID-19. Their role as biomarkers in other neurological disorders is under debate. We analysed serum levels of NfL and GFAP as markers for neuronal and astrocytic damage in 53 patients presenting to a PCS Neurology outpatient clinic. Only individuals with self-reported cognitive complaints were included. In these individuals, cognitive complaints were further assessed by comprehensive neuropsychological assessment (NPA). Patients were categorized into subgroups of subjective cognitive decline, single domain impairment, or multi-domain impairment. Serum NfL was in normal range, however an increase of serum GFAP was detected in 4% of patients. Serum NfL and GFAP levels correlated with each other, even when adjusting for patient age (r = 0.347, p = 0.012). NPA showed deficits in 70%; 40% showing impairment in several tested domains. No significant differences were found between serum NfL- and GFAP-levels comparing patients with subjective cognitive decline, single domain impairment, or multi-domain impairment. Persistent neuronal or astrocytic damage did not correlate with cognitive impairment in PCS.
Collapse
Affiliation(s)
- Fabian Boesl
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Yasemin Goereci
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Finja Schweitzer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Finke
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ann-Katrin Schild
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Rhine-Main Neuroscience Network (rmn2), Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Rhine-Main Neuroscience Network (rmn2), Mainz, Germany
| | - Maria Schröder
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anneke Quitschau
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Josephine Heine
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christiana Franke
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
2
|
Ariza M, Béjar J, Barrué C, Cano N, Segura B, Cortés CU, Junqué C, Garolera M. Cognitive reserve, depressive symptoms, obesity, and change in employment status predict mental processing speed and executive function after COVID-19. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-023-01748-x. [PMID: 38285245 DOI: 10.1007/s00406-023-01748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The risk factors for post-COVID-19 cognitive impairment have been poorly described. This study aimed to identify the sociodemographic, clinical, and lifestyle characteristics that characterize a group of post-COVID-19 condition (PCC) participants with neuropsychological impairment. The study sample included 426 participants with PCC who underwent a neurobehavioral evaluation. We selected seven mental speed processing and executive function variables to obtain a data-driven partition. Clustering algorithms were applied, including K-means, bisecting K-means, and Gaussian mixture models. Different machine learning algorithms were then used to obtain a classifier able to separate the two clusters according to the demographic, clinical, emotional, and lifestyle variables, including logistic regression with least absolute shrinkage and selection operator (LASSO) (L1) and Ridge (L2) regularization, support vector machines (linear/quadratic/radial basis function kernels), and decision tree ensembles (random forest/gradient boosting trees). All clustering quality measures were in agreement in detecting only two clusters in the data based solely on cognitive performance. A model with four variables (cognitive reserve, depressive symptoms, obesity, and change in work situation) obtained with logistic regression with LASSO regularization was able to classify between good and poor cognitive performers with an accuracy and a weighted averaged precision of 72%, a recall of 73%, and an area under the curve of 0.72. PCC individuals with a lower cognitive reserve, more depressive symptoms, obesity, and a change in employment status were at greater risk for poor performance on tasks requiring mental processing speed and executive function. Study registration: www.ClinicalTrials.gov , identifier NCT05307575.
Collapse
Affiliation(s)
- Mar Ariza
- Grup de Recerca en Cervell, Cognició i Conducta, Consorci Sanitari de Terrassa (CST), Terrassa, Spain
- Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona (UB), Barcelona, Spain
| | - Javier Béjar
- Departament de Ciències de la Computació, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.
| | - Cristian Barrué
- Departament de Ciències de la Computació, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Neus Cano
- Grup de Recerca en Cervell, Cognició i Conducta, Consorci Sanitari de Terrassa (CST), Terrassa, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Bàrbara Segura
- Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Claudio Ulises Cortés
- Departament de Ciències de la Computació, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Carme Junqué
- Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Maite Garolera
- Grup de Recerca en Cervell, Cognició i Conducta, Consorci Sanitari de Terrassa (CST), Terrassa, Spain.
- Neuropsychology Unit, Consorci Sanitari de Terrassa (CST), Terrassa, Spain.
| |
Collapse
|
3
|
Marinkovic K, White DR, Alderson Myers A, Parker KS, Arienzo D, Mason GF. Cortical GABA Levels Are Reduced in Post-Acute COVID-19 Syndrome. Brain Sci 2023; 13:1666. [PMID: 38137114 PMCID: PMC10741691 DOI: 10.3390/brainsci13121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed "long COVID". Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - David R. White
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
| | - Austin Alderson Myers
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Katie S. Parker
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
| | - Donatello Arienzo
- Spatio-Temporal Brain Imaging Lab, Department of Psychology, San Diego State University, San Diego, CA 92182, USA (A.A.M.); (D.A.)
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Graeme F. Mason
- Department of Radiology and Biomedical Imaging, Psychiatry, and Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
4
|
Naeem S, Oros SM, Adams CS, Rakesh G. Treatment of Cognitive Deficits and Behavioral Symptoms Following COVID-19-Associated Autoimmune Encephalitis With Intravenous Immunoglobulin: A Case Report and Review of the Literature. Cureus 2023; 15:e51071. [PMID: 38146337 PMCID: PMC10749582 DOI: 10.7759/cureus.51071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 12/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with long-term neuropsychiatric sequelae. We describe a 60-year-old male patient's history and symptom trajectory encompassing the development of behavioral symptoms and cognitive deficits following pneumonia and subsequent autoimmune encephalitis associated with COVID-19. We also describe changes in these facets with correlative changes in his immunological parameters after both acute intravenous immunoglobulin (IVIG) therapy and chronic periodic IVIG therapy every two weeks over the course of two years. We review the literature on the treatment of long COVID-19 symptoms spanning cognitive and behavioral domains. In addition, we also elucidate current literature on the role of IVIG infusions for these symptoms using our patient's presentation and improvement in symptoms as an illustrative example.
Collapse
Affiliation(s)
- Suniya Naeem
- Child Psychiatry, Washington University School of Medicine, St. Louis Children's Hospital, St Louis, USA
| | - Sarah M Oros
- Psychiatry/Internal Medicine, University of Kentucky College of Medicine, Lexington, USA
| | - Christian S Adams
- Psychiatry, University of Kentucky College of Medicine, Lexington, USA
| | - Gopalkumar Rakesh
- Psychiatry, University of Kentucky College of Medicine, Lexington, USA
| |
Collapse
|
5
|
Saucier J, Comeau D, Robichaud GA, Chamard-Witkowski L. Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome. Front Neurol 2023; 14:1221266. [PMID: 37693763 PMCID: PMC10492094 DOI: 10.3389/fneur.2023.1221266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As the repercussions from the COVID-19 pandemic continue to unfold, an ever-expanding body of evidence suggests that infection also elicits pathophysiological manifestations within the central nervous system (CNS), known as neurological symptoms of post-acute sequelae of COVID infection (NeuroPASC). Although the neurological impairments and repercussions associated with NeuroPASC have been well described in the literature, its etiology remains to be fully characterized. Objectives This mini-review explores the current literature that elucidates various mechanisms underlining NeuroPASC, its players, and regulators, leading to persistent neuroinflammation of affected individuals. Specifically, we provide some insights into the various roles played by microglial and astroglial cell reactivity in NeuroPASC and how these cell subsets potentially contribute to neurological impairment in response to the direct or indirect mechanisms of CNS injury. Discussion A better understanding of the mechanisms and biomarkers associated with this maladaptive neuroimmune response will thus provide better diagnostic strategies for NeuroPASC and reveal new potential mechanisms for therapeutic intervention. Altogether, the elucidation of NeuroPASC pathogenesis will improve patient outcomes and mitigate the socioeconomic burden of this syndrome.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Comeau
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de médecine de précision du Nouveau-Brunswick, Vitality Health Network, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Vitality Health Network, Moncton, NB, Canada
| |
Collapse
|