1
|
Han Z, Zhao Z, Wang L, Zhu B, Zhu Y, Yue C, Zhang F, Zhu L, Nie E, Li Z. Targeted Pyroptosis with Resveratrol Nanoparticles to Reduce Secondary Brain Injury and Post-Traumatic Epilepsy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565926 DOI: 10.1021/acsami.4c14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Traumatic brain injury (TBI) is associated with high mortality and disability rates globally, leading to significant sequelae, particularly post-traumatic epilepsy (PTE), which severely impacts physical health and quality of life. TBI involves primary and secondary damage, with the latter exacerbating the initial injury through neuroinflammation, influencing the overall outcome. Recent studies highlight pyroptosis as a crucial factor in the spread of secondary brain damage and the development of epilepsy, making it a vital therapeutic target. While current TBI treatments focus on surgical and medical interventions to reduce intracranial pressure, addressing secondary damage has limited clinical translation, largely due to the blood-brain barrier (BBB) hindering drug accumulation in the affected area. Resveratrol (RV) shows promise as a therapeutic agent due to its anti-inflammatory properties. This study presents a nanoliposome (C-Lips/RV) engineered with cysteine-alanine-glutamine-lysine peptides to enhance RV delivery to the brain, mitigate pyroptosis, and reduce inflammation. In TBI rats, C-Lips/RV demonstrates a longer half-life and effective targeting of brain injury, leading to reduced pyroptosis and PTE, slowed secondary damage progression, and improved functional recovery. This work offers insights into managing secondary brain damage and PTE.
Collapse
Affiliation(s)
- Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| | - Zeqi Zhao
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
- Department of Otolaryngology, The Affiliated Hospital of Xuzhou Medical University, no. 99 Huaihai West Road, Xuzhou 221002, PR China
| | - Lansheng Wang
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| | - Yongqi Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| | - Chenglong Yue
- Department of Neurosurgery, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| | - Fengfei Zhang
- Department of Neurosurgery, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| | - Lei Zhu
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
- Medicine Intensive Care Unit, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
| | - Er Nie
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, no. 99 Huaihai West Road, Xuzhou 221002, PR China
| | - Zhengwei Li
- Department of Neurosurgery, Xuzhou Children's Hospital, no. 18 Sudi North Road, Quanshan District, Xuzhou 221002, PR China
- Xuzhou Medical University, no. 209 Tongshan Road, Xuzhou 221002, P. R. China
| |
Collapse
|
2
|
Javalgekar M, Jupp B, Vivash L, O'Brien TJ, Wright DK, Jones NC, Ali I. Inflammasomes at the crossroads of traumatic brain injury and post-traumatic epilepsy. J Neuroinflammation 2024; 21:172. [PMID: 39014496 PMCID: PMC11250980 DOI: 10.1186/s12974-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.
Collapse
Affiliation(s)
- Mohit Javalgekar
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Bianca Jupp
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Lucy Vivash
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - David K Wright
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Nigel C Jones
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| | - Idrish Ali
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|