1
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
2
|
Scheckenbach V, Fideler F. Optimizing Pediatric Sedation: Evaluating Remimazolam and Dexmedetomidine for Safety and Efficacy in Clinical Practice. Paediatr Drugs 2024:10.1007/s40272-024-00659-1. [PMID: 39485634 DOI: 10.1007/s40272-024-00659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/03/2024]
Abstract
Daily, children undergo countless investigations and interventions, which require sedation and immobilization to ensure safety and accuracy. This remains associated with a persistent risk of sedation-induced life-threatening events as children are particularly vulnerable to adverse medical events and complications. Consequently, there is an urgent need to increase the safety of pediatric sedation and anesthesia. An ideal approach involves the use of drugs with fewer intrinsic side effects. In this context, on the basis of their pharmacokinetic properties, remimazolam (RMZ) and dexmedetomidine (DEX) were evaluated for their suitability as ideal sedatives. RMZ and DEX, both of which are currently available in pediatric medicine, have shown great promise in initial publications. To date, only very limited data concerning RMZ in small children are available. RMZ is a novel, ultrashort-acting benzodiazepine that is metabolized by tissue esterase, largely independent of organ function. It has a context-sensitive half-life of approximately 10 min, with minimal accumulation even with prolonged use. Its effects can be completely reversed with flumazenil. DEX, an isomer of medetomidine, is a potent α2-receptor-agonist with multiple indications in anesthesia and intensive care medicine. It has coanalgesic potential, allows for 'arousal sedations' and has a low profile for cardiorespiratory side effects. DEX is metabolized in the liver and is predominantly excreted renally. Both drugs show potential in the prevention and treatment of delirium, with DEX having additional neuroprotective effects. DEX and RMZ possess several properties of an optimal sedative, including clinically insignificant main metabolites and a broad dosage range, indicating their potential to reduce the incidence of sedation-related life-threatening events in children. However, further clinical research is necessary to better evaluate their potential risks.
Collapse
Affiliation(s)
- Vera Scheckenbach
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler Str. 3, 72076, Tübingen, Germany.
| | - Frank Fideler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler Str. 3, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Sun S, Li P, Wang J, Zhao D, Yang T, Zhou P, Su R, Zheng Z, Li S. Novel Scaffold Agonists of the α 2A Adrenergic Receptor Identified via Ensemble-Based Strategy. Molecules 2024; 29:1097. [PMID: 38474611 DOI: 10.3390/molecules29051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The α2A adrenergic receptor (α2A-AR) serves as a critical molecular target for sedatives and analgesics. However, α2A-AR ligands with an imidazole ring also interact with an imidazoline receptor as well as other proteins and lead to undesirable effects, motivating us to develop more novel scaffold α2A-AR ligands. For this purpose, we employed an ensemble-based ligand discovery strategy, integrating long-term molecular dynamics (MD) simulations and virtual screening, to identify new potential α2A-AR agonists with novel scaffold. Our results showed that compounds SY-15 and SY-17 exhibited significant biological effects in the preliminary evaluation of protein kinase A (PKA) redistribution assays. They also reduced levels of intracellular cyclic adenosine monophosphate (cAMP) in a dose-dependent manner. Upon treatment of the cells with 100 μM concentrations of SY-15 and SY-17, there was a respective decrease in the intracellular cAMP levels by 63.43% and 53.83%. Subsequent computational analysis was conducted to elucidate the binding interactions of SY-15 and SY-17 with the α2A-AR. The binding free energies of SY-15 and SY-17 calculated by MD simulations were -45.93 and -71.97 kcal/mol. MD simulations also revealed that both compounds act as bitopic agonists, occupying the orthosteric site and a novel exosite of the receptor simultaneously. Our findings of integrative computational and experimental approaches could offer the potential to enhance ligand affinity and selectivity through dual-site occupancy and provide a novel direction for the rational design of sedatives and analgesics.
Collapse
Affiliation(s)
- Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jiaqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dongsheng Zhao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Tingting Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
4
|
Liu Y, Cai X, Fang R, Peng S, Luo W, Du X. Future directions in ventilator-induced lung injury associated cognitive impairment: a new sight. Front Physiol 2023; 14:1308252. [PMID: 38164198 PMCID: PMC10757930 DOI: 10.3389/fphys.2023.1308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanical ventilation is a widely used short-term life support technique, but an accompanying adverse consequence can be pulmonary damage which is called ventilator-induced lung injury (VILI). Mechanical ventilation can potentially affect the central nervous system and lead to long-term cognitive impairment. In recent years, many studies revealed that VILI, as a common lung injury, may be involved in the central pathogenesis of cognitive impairment by inducing hypoxia, inflammation, and changes in neural pathways. In addition, VILI has received attention in affecting the treatment of cognitive impairment and provides new insights into individualized therapy. The combination of lung protective ventilation and drug therapy can overcome the inevitable problems of poor prognosis from a new perspective. In this review, we summarized VILI and non-VILI factors as risk factors for cognitive impairment and concluded the latest mechanisms. Moreover, we retrospectively explored the role of improving VILI in cognitive impairment treatment. This work contributes to a better understanding of the pathogenesis of VILI-induced cognitive impairment and may provide future direction for the treatment and prognosis of cognitive impairment.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Ruiying Fang
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Bargnes V, Oliver B, Wang E, Greenspan S, Jin Z, Yeung I, Bergese S. Taming Postoperative Delirium with Dexmedetomidine: A Review of the Therapeutic Agent's Neuroprotective Effects following Surgery. Pharmaceuticals (Basel) 2023; 16:1453. [PMID: 37895924 PMCID: PMC10610260 DOI: 10.3390/ph16101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Postoperative delirium (POD) represents a perioperative neurocognitive disorder that has dreaded ramifications on a patient's recovery from surgery. Dexmedetomidine displays multiple mechanisms of neuroprotection to assist in preventing POD as a part of a comprehensive anesthetic care plan. This review will cover dexmedetomidine's pharmacological overlap with the current etiological theories behind POD along with pre-clinical and clinical studies on POD prevention with dexmedetomidine. While the body of evidence surrounding the use of dexmedetomidine for POD prevention still requires further development, promising evidence exists for the use of dexmedetomidine in select dosing and circumstances to enhance recovery from surgery.
Collapse
Affiliation(s)
- Vincent Bargnes
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Brian Oliver
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Emily Wang
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Seth Greenspan
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Isaac Yeung
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|