1
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
2
|
Kakhki S, Abbaszade-Cheragheali A, Tafti SP, Shirinzadeh Feizabadi A, Ahmadi-Soleimani SM, Beheshti F. Oral administration of crocin reverses memory loss induced by ethanol and nicotine abstinence in adolescent male rats. Neurosci Lett 2024; 846:138077. [PMID: 39662771 DOI: 10.1016/j.neulet.2024.138077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE Regarding a wide variety of researches conducted with various therapeutic effect of crocin, the main constituent of saffron, the current study aims to assess the efficacy of crocin to improve learning and memory impairment caused by withdrawal following concurrent usage of ethanol (Eth) and nicotine (Nic) in adolescent male rats. METHODS In order to test memory fucntion, Morris water maze and passive avoidance methods were applied in male Wistar rats undergone adolescent Nic-Eth withdrawal and the effect of crocin treatment was assessed at both behavioral and biochemical levels. The biochemical parameters included the inflammatory cytokines, indicators of oxidative stress and cholinergic metabolism within the hippocampla tissues. Animals were divided into 7 experimental groups as follows: 1) control (saline + saline), 2) nicotine + ethanol, 3-5) nicotine + ethanol + crocin (three doses), 6) nicotine + ethanol + bupropion + naloxone and 7) saline + crocin. RESULTS Results indicated that crocin treatment effectively prevented the Nic-Eth withdrawal induced behavioral manifestations of memory impairment when assessed by Morris water maze and passive avoidance tests. In addition, the biochemical alterations (in inflammatory, oxidative and cholinergic parameters) induced by Nic-Eth withdrawal were also ameliorated in rats treated by crocin. Interestingly, the mentioned ameliorative effect of crocin was found to be dose-dependent in most experiments and almost equipotential to that of bupropion and naloxone co-administration, when administered at high doses. CONCLUSION We would like to suggest the crocin treatment as an alternative medication for the management of Nic - Eth withdrawal, however, further studies are required to assess the unknown side effects and high dose tolerability of the drug in human subjects.
Collapse
Affiliation(s)
- Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Abbaszade-Cheragheali
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Pouria Tafti
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Shirinzadeh Feizabadi
- Department of Medical Anesthesiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
3
|
Bolívar DA, Mosquera-Heredia MI, Vidal OM, Barceló E, Allegri R, Morales LC, Silvera-Redondo C, Arcos-Burgos M, Garavito-Galofre P, Vélez JI. Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer's Disease. Int J Mol Sci 2024; 25:12293. [PMID: 39596356 PMCID: PMC11594294 DOI: 10.3390/ijms252212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. While the precise causes of AD remain unclear, emerging evidence suggests that messenger RNA (mRNA) dysregulation contributes to AD pathology and risk. This study examined exosomal mRNA expression profiles of 15 individuals diagnosed with AD and 15 healthy controls from Barranquilla, Colombia. Utilizing advanced bioinformatics and machine learning (ML) techniques, we identified differentially expressed mRNAs and assessed their predictive power for AD diagnosis and AD age of onset (ADAOO). Our results showed that ENST00000331581 (CADM1) and ENST00000382258 (TNFRSF19) were significantly upregulated in AD patients. Key predictors for AD diagnosis included ENST00000311550 (GABRB3), ENST00000278765 (GGTLC1), ENST00000331581 (CADM1), ENST00000372572 (FOXJ3), and ENST00000636358 (ACY1), achieving > 90% accuracy in both training and testing datasets. For ADAOO, ENST00000340552 (LIMK2) expression correlated with a delay of ~12.6 years, while ENST00000304677 (RNASE6), ENST00000640218 (HNRNPU), ENST00000602017 (PPP5D1), ENST00000224950 (STN1), and ENST00000322088 (PPP2R1A) emerged as the most important predictors. ENST00000304677 (RNASE6) and ENST00000602017 (PPP5D1) showed promising predictive accuracy in unseen data. These findings suggest that mRNA expression profiles may serve as effective biomarkers for AD diagnosis and ADAOO, providing a cost-efficient and minimally invasive tool for early detection and monitoring. Further research is needed to validate these results in larger, diverse cohorts and explore the biological roles of the identified mRNAs in AD pathogenesis.
Collapse
Affiliation(s)
- Daniel A. Bolívar
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | | | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia
- Department of Health Sciences, Universidad de La Costa, Barranquilla 080002, Colombia
- Grupo Internacional de Investigación Neuro-Conductual (GIINCO), Universidad de La Costa, Barranquilla 080002, Colombia
| | - Ricardo Allegri
- Institute for Neurological Research FLENI, Montañeses 2325, Buenos Aires C1428AQK, Argentina
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
4
|
Ilic I, Jakovljevic V, Zivanovic Macuzic I, Ravic-Nikolic A, Ilic M, Sorak M, Milicic V. Trends in Global Burden of Alzheimer's Disease and Other Dementias Attributable to High Fasting Plasma Glucose, 1990-2021. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1783. [PMID: 39596969 PMCID: PMC11596767 DOI: 10.3390/medicina60111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Alzheimer's disease and other dementias represent some of the leading public health concerns worldwide. This study aimed to assess the global burden of Alzheimer's disease and other dementias attributable to high fasting plasma glucose in the last decades. Materials and Methods: A descriptive epidemiological study was conducted. The Global Burden of Disease (GBD) study data about deaths and Disability-Adjusted Life Years (DALYs) were used. All figures were presented as age-standardized rates (ASRs). The average annual percent change (AAPC) was computed using the Joinpoint regression analysis. Also, age-period-cohort analysis was performed. Results: A total of 2 million deaths from Alzheimer's disease and other dementias were reported worldwide in 2021, whereby the total number deaths from Alzheimer's disease and other dementias attributable to high fasting plasma glucose was 290,032 (98,900 males and 191,132 females) in 2021. The highest ASRs of burden of Alzheimer's disease and other dementias attributable to high fasting plasma glucose were found in Afghanistan, Iraq, Morocco, Qatar, and the United States of America, while the lowest ASRs were in Belarus and Mongolia. From 1990 to 2021, a significant increase (p < 0.001) was noted in ASRs of deaths and DALYs for Alzheimer's disease and other dementias attributable to high fasting plasma glucose. Looking at the GBD regions, the trends in ASRs for mortality and for DALYs of Alzheimer's disease and other dementias attributable to high fasting plasma glucose between 1990 and 2021 showed a growth 10-fold faster in High-income North America (AAPC = 2.0%, for both equally) and Central Asia (AAPC = 2.4% and AAPC = 2.5%, respectively) than in the region of High-income Asia Pacific (AAPC = 0.1% and AAPC = 0.2%, respectively). The relative risk of mortality and DALYs for Alzheimer's disease and other dementias attributable to high fasting plasma glucose demonstrated statistically significant (p < 0.0001) period and cohort effects, and net drift and local drifts. Conclusions: This study showed an increase in the global burden of Alzheimer's disease and other dementias attributable to high fasting plasma glucose in the last decades. Future successful entire-population strategies targeting high fasting plasma glucose may reduce the burden of a wide range of these diseases.
Collapse
Affiliation(s)
- Irena Ilic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivana Zivanovic Macuzic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana Ravic-Nikolic
- Department of Dermatovenerology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milena Ilic
- Department of Epidemiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Sorak
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Milicic
- Department of Dermatovenerology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Yang HJ, Zhang T, Kim MJ, Hur HJ, Wu X, Jang DJ, Park S. Efficacy and Mechanism of Schisandra chinensis Fructus Water Extract in Alzheimer's Disease: Insights from Network Pharmacology and Validation in an Amyloid-β Infused Animal Model. Nutrients 2024; 16:3751. [PMID: 39519586 PMCID: PMC11547720 DOI: 10.3390/nu16213751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Schisandra chinensis Fructus (SCF) is a traditional medicinal herb containing lignans that improves glucose metabolism by mitigating insulin resistance. We aimed to investigate the therapeutic potential and action mechanism of SCF for Alzheimer's disease (AD) using a network pharmacology analysis, followed by experimental validation in an AD rat model. METHODS The biological activities of SCF's bioactive compounds were assessed through a network pharmacology analysis. An AD rat model was generated by infusing amyloid-β peptide (Aβ) (25-35) into the hippocampus to induce Aβ accumulation. The AD rats were fed either 0.5% dextrin (AD-Con) or 0.5% SCF (AD-SCF group) in a high-fat diet for seven weeks. The rats in the normal/control group received an Aβ (35-25) infusion (no Aβ deposition) and were fed a control diet (Normal-C). Aβ deposition, memory function, inflammation, and glucose/lipid metabolism were evaluated. RESULTS The network analysis revealed significant intersections between AD-related targets and bioactive SCF compounds, like gomisin A, schisandrin, and longikaurin A. Key AD genes prostaglandin-endoperoxide synthase-2 (PTGS2, cyclooxygenase-2) and acetylcholinesterase (AChE) were linked to SCF compounds. In the rats with AD induced by bilaterally infusing amyloid-β (25-35) into the hippocampus, the 0.5% SCF intake mitigated hippocampal amyloid-β deposition, neuroinflammation, memory deficits, and dysregulated glucose and lipid metabolism versus the AD controls. SCF reduced hippocampal AChE activity, inflammatory cytokine expression related to PTGS2, and malondialdehyde contents and preserved neuronal cell survival-related factors such as brain-derived neurotrophic factor and ciliary neurotrophic factor similar to normal rats. The neuroprotective effects validated the network analysis findings. CONCLUSIONS SCF could be a potential AD therapeutic agent by activating the parasympathetic nervous system to reduce hippocampal oxidative stress and inflammation, warranting further clinical investigations of its efficacy.
Collapse
Affiliation(s)
- Hye-Jeong Yang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.-J.Y.); (M.-J.K.); (H.-J.H.)
| | - Ting Zhang
- Department of Food and Nutrition, Institute of Basic Science, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (X.W.)
| | - Min-Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.-J.Y.); (M.-J.K.); (H.-J.H.)
| | - Haeng-Jeon Hur
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.-J.Y.); (M.-J.K.); (H.-J.H.)
| | - Xuangao Wu
- Department of Food and Nutrition, Institute of Basic Science, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (X.W.)
| | - Dai-Ja Jang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.-J.Y.); (M.-J.K.); (H.-J.H.)
| | - Sunmin Park
- Department of Food and Nutrition, Institute of Basic Science, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (X.W.)
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
6
|
Sepúlveda P, Ferreira AFF, Sandoval C, Bergoc G, Moreno ACR, Nunes MT, Torrão ADS. Thyroid Hormone Supplementation Restores Cognitive Deficit, Insulin Signaling, and Neuroinflammation in the Hippocampus of a Sporadic Alzheimer's-like Disease Rat Model. Cells 2024; 13:1793. [PMID: 39513900 PMCID: PMC11545223 DOI: 10.3390/cells13211793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 11/16/2024] Open
Abstract
Thyroid hormones play a crucial role in the development of the central nervous system and are considered pivotal to cognitive functions in the adult brain. Recently, thyroid dysfunction has been associated with Alzheimer's disease. The aim of this study was to assess the neuroprotective effects of triiodothyronine (T3) on insulin signaling, neuroinflammation, apoptosis, and cognitive function in a streptozotocin (STZ)-induced sporadic Alzheimer's disease-like model. Male Wistar rats underwent stereotaxic surgery for intracerebroventricular injections of streptozotocin (STZ; 2 mg/kg) or vehicle in the lateral ventricles to induce an AD-like model. The animals received a daily dose of 1.5 μg of T3/100 g body weight or the same volume of vehicle for 30 days and were subdivided into four experimental groups: (1) animals receiving citrate treated with saline (Control = CTL); (2) animals receiving citrate treated with T3 (T3); (3) animals receiving STZ treated with saline (STZ); and (4) animals receiving STZ treated with T3 (STZ + T3). The novel object recognition test was used to measure cognitive function. Serum analysis, real-time RT-PCR, immunohistochemistry, and immunoblotting analyses were also carried out. Our results demonstrated that T3 treatment reversed cognitive impairment and increased Akt and GSK3 phosphorylation in the treated group, while also reducing microglial activation (Iba-1) and GFAP expression (reactive astrocytes), along with TNF-α, IL-6, and IL-1β levels in the hippocampus. Additionally, T3 treatment increased levels of the anti-apoptotic protein Bcl-2 and reduced the expression of the pro-apoptotic protein BAX in the hippocampus. Our study demonstrated that T3 could potentially protect neurons in an AD model induced by STZ.
Collapse
Affiliation(s)
- Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.F.F.F.); (G.B.); (A.C.R.M.); (M.T.N.)
| | - Ana Flavia Fernandes Ferreira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.F.F.F.); (G.B.); (A.C.R.M.); (M.T.N.)
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Giovanna Bergoc
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.F.F.F.); (G.B.); (A.C.R.M.); (M.T.N.)
| | - Ana Caroline Rippi Moreno
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.F.F.F.); (G.B.); (A.C.R.M.); (M.T.N.)
| | - Maria Tereza Nunes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.F.F.F.); (G.B.); (A.C.R.M.); (M.T.N.)
| | - Andréa da Silva Torrão
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.F.F.F.); (G.B.); (A.C.R.M.); (M.T.N.)
| |
Collapse
|
7
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
8
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Frank G, Gualtieri P, Cianci R, Caldarelli M, Palma R, De Santis GL, Porfilio C, Nicoletti F, Bigioni G, Di Renzo L. Body Composition and Alzheimer's Disease: A Holistic Review. Int J Mol Sci 2024; 25:9573. [PMID: 39273520 PMCID: PMC11395597 DOI: 10.3390/ijms25179573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) represents a significant global health challenge and affects approximately 50 million people worldwide. This overview of published reviews provides a comprehensive understanding of the intricate correlations between AD and body composition, focusing particularly on obesity. We used a systematic approach to collect and analyze relevant reviews on the topic of obesity and Alzheimer's disease. A comprehensive search of electronic databases, including PubMed, MEDLINE, and Google Scholar, was conducted. We searched keywords such as "Alzheimer's disease", "body composition", "lean mass", "bone mass", and "fat mass". We considered only reviews written within the past 5 years and in English. Fifty-six relevant reviews were identified that shed light on the multiple connections between AD and body composition. The review involves several aspects, including the impact of lean mass, bone mass, and endocrinological factors related to obesity, as well as inflammation, neuroinflammation, and molecular/genetic factors. The findings highlight the complex interplay of these elements in the development of AD, underscoring the need for holistic approaches to reduce the risk of AD and to explore innovative strategies for diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Roselisa Palma
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Lou De Santis
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Porfilio
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Francesco Nicoletti
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Bigioni
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Qian B, Li TY, Zheng ZX, Zhang HY, Xu WQ, Mo SM, Cui JJ, Chen WJ, Lin YC, Lin ZN. The involvement of SigmaR1 K142 degradation mediated by ERAD in neural senescence linked with CdCl 2 exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134466. [PMID: 38718507 DOI: 10.1016/j.jhazmat.2024.134466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. β-amyloid (Aβ) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aβ and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting-Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wen-Qi Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Su-Min Mo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Jia Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei-Jie Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|