1
|
Further replication of the synergistic interaction between LPHN3 and the NTAD gene cluster on ADHD and its clinical course throughout adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28624582 DOI: 10.1016/j.pnpbp.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common and highly heritable neuropsychiatric disorder. Despite the high heritability, the unraveling of specific genetic factors related to ADHD is hampered by its considerable genetic complexity. Recent evidence suggests that gene-gene interactions can explain part of this complexity. We examined the impact of strongly supported interaction effects between the LPHN3 gene and the NTAD gene cluster (NCAM1-TTC12-ANKK1-DRD2) in a 7-year follow-up of a clinical sample of adults with ADHD, addressing associations with susceptibility, symptomatology and stability of diagnosis. The sample comprises 548 adults with ADHD and 643 controls. Entropy-based analysis indicated a potential interaction between the LPHN3-rs6551665 and TTC12-rs2303380 SNPs influencing ADHD symptom counts. Further analyses revealed significant interaction effects on ADHD total symptoms (p=0.002), and with hyperactivity/impulsivity symptom counts (p=0.005). In the group composed by predominantly hyperactive/impulsive and combined presentation, the presence of LPHN3-rs6551665 G allele was related to increased ADHD risk only in individuals carrying the TTC12-rs2303380 AA genotype (p=0.026). Also, the same allelic constellation is involved in maintenance of ADHD in a predominantly hyperactive/impulsive or combined presentation after a 7-year follow-up (p=0.008). These observations reinforce and replicate previous evidence suggesting that an interaction effect between the LPHN3 gene and the NTAD cluster may have a role in the genetic substrate associated to ADHD also in adults. Moreover, it is possible that the interactions between LPHN3 and NTAD are specific factors contributing to the development of an ADHD phenotype with increased hyperactivity/impulsivity that is maintained throughout adulthood.
Collapse
|
2
|
Grave N, Tovo-Rodrigues L, da Silveira J, Rovaris DL, Dal Bosco SM, Contini V, Genro JP. A vitamin D pathway gene-gene interaction affects low-density lipoprotein cholesterol levels. J Nutr Biochem 2016; 38:12-17. [PMID: 27721113 DOI: 10.1016/j.jnutbio.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 01/06/2023]
Abstract
Much evidence suggests an association between vitamin D deficiency and chronic diseases such as obesity and dyslipidemia. Although genetic factors play an important role in the etiology of these diseases, only a few studies have investigated the relationship between vitamin D-related genes and anthropometric and lipid profiles. The aim of this study was to investigate the association of three vitamin D-related genes with anthropometric and lipid parameters in 542 adult individuals. We analyzed the rs2228570 polymorphism in the vitamin D receptor gene (VDR), rs2134095 in the retinoid X receptor gamma gene (RXRG) and rs7041 in the vitamin D-binding protein gene (GC). Polymorphisms were genotyped by TaqMan allelic discrimination. Gene-gene interactions were evaluated by the general linear model. The functionality of the polymorphisms was investigated using the following predictors and databases: SIFT (Sorting Intolerant from Tolerant), PolyPhen-2 (Polymorphism Phenotyping v2) and Human Splicing Finder 3. We identified a significant effect of the interaction between RXRG (rs2134095) and GC (rs7041) on low-density lipoprotein cholesterol (LDL-c) levels (P=.005). Furthermore, our in silico analysis suggested a functional role for both variants in the regulation of the gene products. Our results suggest that the vitamin D-related genes RXRG and GC affect LDL-c levels. These findings are in agreement with other studies that consistently associate vitamin D and lipid profile. Together, our results corroborate the idea that analyzing gene-gene interaction would be helpful to clarify the genetic component of lipid profile.
Collapse
Affiliation(s)
- Nathália Grave
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil
| | - Luciana Tovo-Rodrigues
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, 96020-220, Pelotas, RS, Brazil
| | - Janaína da Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil
| | - Diego Luiz Rovaris
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Simone Morelo Dal Bosco
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil
| | - Verônica Contini
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil; Setor de Genética e Biologia Molecular do Museu de Ciências Naturais, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil
| | - Júlia Pasqualini Genro
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Corticosteroid receptor genes and childhood neglect influence susceptibility to crack/cocaine addiction and response to detoxification treatment. J Psychiatr Res 2015; 68:83-90. [PMID: 26228405 DOI: 10.1016/j.jpsychires.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 01/21/2023]
Abstract
The aim of this study was to analyze hypotheses-driven gene-environment and gene-gene interactions in smoked (crack) cocaine addiction by evaluating childhood neglect and polymorphisms in mineralocorticoid and glucocorticoid receptor genes (NR3C2 and NR3C1, respectively). One hundred thirty-nine crack/cocaine-addicted women who completed 3 weeks of follow-up during early abstinence composed our sample. Childhood adversities were assessed using the Childhood Trauma Questionnaire (CTQ), and withdrawal symptoms were assessed using the Cocaine Selective Severity Assessment (CSSA) scale. Conditional logistic regression with counterfactuals and generalized estimating equation modeling were used to test gene-environment and gene-gene interactions. We found an interaction between the rs5522-Val allele and childhood physical neglect, which altered the risk of crack/cocaine addiction (Odds ratio = 4.0, P = 0.001). Moreover, a NR3C2-NR3C1 interaction (P = 0.002) was found modulating the severity of crack/cocaine withdrawal symptoms. In the post hoc analysis, concomitant carriers of the NR3C2 rs5522-Val and NR3C1 rs6198-G alleles showed lower overall severity scores when compared to other genotype groups (P-values ≤ 0.035). This gene-environment interaction is consistent with epidemiological and human experimental findings demonstrating a strong relationship between early life stress and the hypothalamic-pituitary-adrenal (HPA) axis dysregulation in cocaine addiction. Additionally, this study extended in crack/cocaine addiction the findings previously reported for tobacco smoking involving an interaction between NR3C2 and NR3C1 genes.
Collapse
|
4
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Innate immune response is differentially dysregulated between bipolar disease and schizophrenia. Schizophr Res 2015; 161:215-21. [PMID: 25487697 DOI: 10.1016/j.schres.2014.10.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/22/2014] [Accepted: 10/28/2014] [Indexed: 01/04/2023]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions with a neurodevelopmental component. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders. Also, image studies provide evidence for a shared neurobiological basis, contributing to a dimensional diagnostic approach. This study aimed to identify the molecular mechanisms that differentiate SZ and BD patients from health controls but also that distinguish both from health individuals. Comparison of gene expression profiling in post-mortem brains of both disorders and health controls (30 cases), followed by a further comparison between 29 BD and 29 SZ revealed 28 differentially expressed genes. These genes were used in co-expression analysesthat revealed the pairs CCR1/SERPINA1, CCR5/HCST, C1QA/CD68, CCR5/S100A11 and SERPINA1/TLR1 as presenting the most significant difference in co-expression between SZ and BD. Next, a protein-protein interaction (PPI) network using the 28 differentially expressed genes as seeds revealed CASP4, TYROBP, CCR1, SERPINA1, CCR5 and C1QA as having a central role in the diseases manifestation. Both co-expression and network topological analyses pointed to genes related to microglia functions. Based on this data, we suggest that differences between SZ and BP are due to genes involved with response to stimulus, defense response, immune system process and response to stress biological processes, all having a role in the communication of environmental factors to the cells and associated to microglia.
Collapse
|