1
|
Albrecht C, Bellebaum C. Slip or fallacy? Effects of error severity on own and observed pitch error processing in pianists. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01097-1. [PMID: 37198385 PMCID: PMC10400674 DOI: 10.3758/s13415-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Errors elicit a negative, mediofrontal, event-related potential (ERP), for both own errors (error-related negativity; ERN) and observed errors (here referred to as observer mediofrontal negativity; oMN). It is unclear, however, if the action-monitoring system codes action valence as an all-or-nothing phenomenon or if the system differentiates between errors of different severity. We investigated this question by recording electroencephalography (EEG) data of pianists playing themselves (Experiment 1) or watching others playing (Experiment 2). Piano pieces designed to elicit large errors were used. While active participants' ERN amplitudes differed between small and large errors, observers' oMN amplitudes did not. The different pattern in the two groups of participants was confirmed in an exploratory analysis comparing ERN and oMN directly. We suspect that both prediction and action mismatches can be coded in action monitoring systems, depending on the task, and a need-to-adapt signal is sent whenever mismatches happen to indicate the magnitude of the needed adaptation.
Collapse
Affiliation(s)
- Christine Albrecht
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, building 23.03, room number 00.89, 40225, Düsseldorf, Germany.
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, building 23.03, room number 00.89, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Tervaniemi M. The neuroscience of music – towards ecological validity. Trends Neurosci 2023; 46:355-364. [PMID: 37012175 DOI: 10.1016/j.tins.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Studies in the neuroscience of music gained momentum in the 1990s as an integrated part of the well-controlled experimental research tradition. However, during the past two decades, these studies have moved toward more naturalistic, ecologically valid paradigms. Here, I introduce this move in three frameworks: (i) sound stimulation and empirical paradigms, (ii) study participants, and (iii) methods and contexts of data acquisition. I wish to provide a narrative historical overview of the development of the field and, in parallel, to stimulate innovative thinking to further advance the ecological validity of the studies without overlooking experimental rigor.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Centre of Excellence in Music, Mind, Body, and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland; Cognitive Brain Research Unit, Department of Psychology and Locopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Paas A, Novembre G, Lappe C, Keller PE. Not all errors are alike: modulation of error-related neural responses in musical joint action. Soc Cogn Affect Neurosci 2021; 16:512-524. [PMID: 33565593 PMCID: PMC8094995 DOI: 10.1093/scan/nsab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
During joint action, the sense of agency enables interaction partners to implement corrective and adaptive behaviour in response to performance errors. When agency becomes ambiguous (e.g. when action similarity encourages perceptual self-other overlap), confusion as to who produced what may disrupt this process. The current experiment investigated how ambiguity of agency affects behavioural and neural responses to errors in a joint action domain where self-other overlap is common: musical duos. Pairs of pianists performed piano pieces in synchrony, playing either the same pitches (ambiguous agency) or different pitches (unambiguous agency) while electroencephalography (EEG) was recorded for each individual. Behavioural and event-related potential results showed no effects of the agency manipulation but revealed differences in how distinct error types are processed. Self-produced 'wrong note' errors (substitutions) were left uncorrected, showed post-error slowing and elicited an error-related negativity (ERN) peaking before erroneous keystrokes (pre-ERN). In contrast, self-produced 'extra note' errors (additions) exhibited pre-error slowing, error and post-error speeding, were rapidly corrected and elicited the ERN. Other-produced errors evoked a feedback-related negativity but no behavioural effects. Overall findings shed light upon how the nervous system supports fluent interpersonal coordination in real-time joint action by employing distinct mechanisms to manage different types of errors.
Collapse
Affiliation(s)
- Anita Paas
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab & Neuroscience and Behaviour Lab, Italian Institute of Technology (IIT), Rome, 00161, Italy
| | - Claudia Lappe
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, 48149, Germany
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
4
|
Hoehl S, Fairhurst M, Schirmer A. Interactional synchrony: signals, mechanisms and benefits. Soc Cogn Affect Neurosci 2021; 16:5-18. [PMID: 32128587 PMCID: PMC7812629 DOI: 10.1093/scan/nsaa024] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Many group-living animals, humans included, occasionally synchronize their behavior with that of conspecifics. Social psychology and neuroscience have attempted to explain this phenomenon. Here we sought to integrate results around three themes: the stimuli, the mechanisms and the benefits of interactional synchrony. As regards stimuli, we asked what characteristics, apart from temporal regularity, prompt synchronization and found that stimulus modality and complexity are important. The high temporal resolution of the auditory system and the relevance of socio-emotional information endow auditory, multimodal, emotional and somewhat variable and adaptive sequences with particular synchronizing power. Looking at the mechanisms revealed that traditional perspectives emphasizing beat-based representations of others' signals conflict with more recent work investigating the perception of temporal regularity. Timing processes supported by striato-cortical loops represent any kind of repetitive interval sequence fairly automatically. Additionally, socio-emotional processes supported by posterior superior temporal cortex help endow such sequences with value motivating the extent of synchronizing. Synchronizing benefits arise from an increased predictability of incoming signals and include many positive outcomes ranging from basic information processing at the individual level to the bonding of dyads and larger groups.
Collapse
Affiliation(s)
- Stefanie Hoehl
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Merle Fairhurst
- Institute for Psychology, Bundeswehr University Munich, Germany
- Munich Center for Neuroscience, Ludwig Maximilian University, Germany
| | - Annett Schirmer
- Department of Psychology, The Chinese University of Hong Kong, 3rd Floor, Sino Building, Shatin, N.T., Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, 3rd Floor, Sino Building, Shatin, N.T., Hong Kong
- Center for Cognition and Brain Studies, The Chinese University of Hong Kong, 3rd Floor, Sino Building, Shatin, N.T., Hong Kong
| |
Collapse
|
5
|
Pinet S, Nozari N. Electrophysiological Correlates of Monitoring in Typing with and without Visual Feedback. J Cogn Neurosci 2019; 32:603-620. [PMID: 31702430 DOI: 10.1162/jocn_a_01500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
New theories of monitoring in language production, regardless of their mechanistic differences, all posit monitoring mechanisms that share general computational principles with action monitoring. This perspective, if accurate, would predict that many electrophysiological signatures of performance monitoring should be recoverable from language production tasks. In this study, we examined both error-related and feedback-related EEG indices of performance monitoring in the context of a typing-to-dictation task. To disentangle the contribution of the external from internal monitoring processes, we created a condition where participants immediately saw the word they typed (the immediate-feedback condition) versus one in which displaying the word was delayed until the end of the trial (the delayed-feedback condition). The removal of immediate visual feedback prompted a stronger reliance on internal monitoring processes, which resulted in lower correction rates and a clear error-related negativity. Compatible with domain-general monitoring views, an error positivity was only recovered under conditions where errors were detected or had a high likelihood of being detected. Examination of the feedback-related indices (feedback-related negativity and frontocentral positivity) revealed a two-stage process of integration of internal and external information. The recovery of a full range of well-established EEG indices of action monitoring in a language production task strongly endorses domain-general views of monitoring. Such indices, in turn, are helpful in understanding how information from different monitoring channels are combined.
Collapse
|
6
|
Panasiti M, Pavone E, Aglioti S. Electrocortical signatures of detecting errors in the actions of others: An EEG study in pianists, non-pianist musicians and musically naïve people. Neuroscience 2016; 318:104-13. [DOI: 10.1016/j.neuroscience.2016.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
7
|
François C, Grau-Sánchez J, Duarte E, Rodriguez-Fornells A. Musical training as an alternative and effective method for neuro-education and neuro-rehabilitation. Front Psychol 2015; 6:475. [PMID: 25972820 PMCID: PMC4411999 DOI: 10.3389/fpsyg.2015.00475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/02/2015] [Indexed: 01/14/2023] Open
Abstract
In the last decade, important advances in the field of cognitive science, psychology, and neuroscience have largely contributed to improve our knowledge on brain functioning. More recently, a line of research has been developed that aims at using musical training and practice as alternative tools for boosting specific perceptual, motor, cognitive, and emotional skills both in healthy population and in neurologic patients. These findings are of great hope for a better treatment of language-based learning disorders or motor impairment in chronic non-communicative diseases. In the first part of this review, we highlight several studies showing that learning to play a musical instrument can induce substantial neuroplastic changes in cortical and subcortical regions of motor, auditory and speech processing networks in healthy population. In a second part, we provide an overview of the evidence showing that musical training can be an alternative, low-cost and effective method for the treatment of language-based learning impaired populations. We then report results of the few studies showing that training with musical instruments can have positive effects on motor, emotional, and cognitive deficits observed in patients with non-communicable diseases such as stroke or Parkinson Disease. Despite inherent differences between musical training in educational and rehabilitation contexts, these results favor the idea that the structural, multimodal, and emotional properties of musical training can play an important role in developing new, creative and cost-effective intervention programs for education and rehabilitation in the next future.
Collapse
Affiliation(s)
- Clément François
- Department of Basic Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Jennifer Grau-Sánchez
- Department of Basic Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Esther Duarte
- Department of Physical Medicine and Rehabilitation, Parc de Salut Mar, Hospitals del Mar i de l’Esperança, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Department of Basic Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
8
|
Pfordresher PQ, Beasley RTE. Making and monitoring errors based on altered auditory feedback. Front Psychol 2014; 5:914. [PMID: 25191294 PMCID: PMC4138776 DOI: 10.3389/fpsyg.2014.00914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/31/2014] [Indexed: 11/13/2022] Open
Abstract
Previous research has demonstrated that altered auditory feedback (AAF) disrupts music performance and causes disruptions in both action planning and the perception of feedback events. It has been proposed that this disruption occurs because of interference within a shared representation for perception and action (Pfordresher, 2006). Studies reported here address this claim from the standpoint of error monitoring. In Experiment 1 participants performed short melodies on a keyboard while hearing no auditory feedback, normal auditory feedback, or alterations to feedback pitch on some subset of events. Participants overestimated error frequency when AAF was present but not for normal feedback. Experiment 2 introduced a concurrent load task to determine whether error monitoring requires executive resources. Although the concurrent task enhanced the effect of AAF, it did not alter participants' tendency to overestimate errors when AAF was present. A third correlational study addressed whether effects of AAF are reduced for a subset of the population who may lack the kind of perception/action associations that lead to AAF disruption: poor-pitch singers. Effects of manipulations similar to those presented in Experiments 1 and 2 were reduced for these individuals. We propose that these results are consistent with the notion that AAF interference is based on associations between perception and action within a forward internal model of auditory-motor relationships.
Collapse
Affiliation(s)
- Peter Q Pfordresher
- Auditory Perception and Action Laboratory, Department of Psychology, University at Buffalo-State University of New York Buffalo, NY, USA
| | - Robertson T E Beasley
- Auditory Perception and Action Laboratory, Department of Psychology, University at Buffalo-State University of New York Buffalo, NY, USA
| |
Collapse
|