1
|
Muntané G, Farré X, Rodríguez JA, Pegueroles C, Hughes DA, de Magalhães JP, Gabaldón T, Navarro A. Biological Processes Modulating Longevity across Primates: A Phylogenetic Genome-Phenome Analysis. Mol Biol Evol 2019; 35:1990-2004. [PMID: 29788292 PMCID: PMC6063263 DOI: 10.1093/molbev/msy105] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is a complex process affecting different species and individuals in different ways. Comparing genetic variation across species with their aging phenotypes will help understanding the molecular basis of aging and longevity. Although most studies on aging have so far focused on short-lived model organisms, recent comparisons of genomic, transcriptomic, and metabolomic data across lineages with different lifespans are unveiling molecular signatures associated with longevity. Here, we examine the relationship between genomic variation and maximum lifespan across primate species. We used two different approaches. First, we searched for parallel amino-acid mutations that co-occur with increases in longevity across the primate linage. Twenty-five such amino-acid variants were identified, several of which have been previously reported by studies with different experimental setups and in different model organisms. The genes harboring these mutations are mainly enriched in functional categories such as wound healing, blood coagulation, and cardiovascular disorders. We demonstrate that these pathways are highly enriched for pleiotropic effects, as predicted by the antagonistic pleiotropy theory of aging. A second approach was focused on changes in rates of protein evolution across the primate phylogeny. Using the phylogenetic generalized least squares, we show that some genes exhibit strong correlations between their evolutionary rates and longevity-associated traits. These include genes in the Sphingosine 1-phosphate pathway, PI3K signaling, and the Thrombin/protease-activated receptor pathway, among other cardiovascular processes. Together, these results shed light into human senescence patterns and underscore the power of comparative genomics to identify pathways related to aging and longevity.
Collapse
Affiliation(s)
- Gerard Muntané
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Biomedical Network Research Centre on Mental Health (CIBERSAM), Reus, Spain
| | - Xavier Farré
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - David A Hughes
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Miller CT, Hale ME, Okano H, Okabe S, Mitra P. Comparative Principles for Next-Generation Neuroscience. Front Behav Neurosci 2019; 13:12. [PMID: 30787871 PMCID: PMC6373779 DOI: 10.3389/fnbeh.2019.00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Neuroscience is enjoying a renaissance of discovery due in large part to the implementation of next-generation molecular technologies. The advent of genetically encoded tools has complemented existing methods and provided researchers the opportunity to examine the nervous system with unprecedented precision and to reveal facets of neural function at multiple scales. The weight of these discoveries, however, has been technique-driven from a small number of species amenable to the most advanced gene-editing technologies. To deepen interpretation and build on these breakthroughs, an understanding of nervous system evolution and diversity are critical. Evolutionary change integrates advantageous variants of features into lineages, but is also constrained by pre-existing organization and function. Ultimately, each species’ neural architecture comprises both properties that are species-specific and those that are retained and shared. Understanding the evolutionary history of a nervous system provides interpretive power when examining relationships between brain structure and function. The exceptional diversity of nervous systems and their unique or unusual features can also be leveraged to advance research by providing opportunities to ask new questions and interpret findings that are not accessible in individual species. As new genetic and molecular technologies are added to the experimental toolkits utilized in diverse taxa, the field is at a key juncture to revisit the significance of evolutionary and comparative approaches for next-generation neuroscience as a foundational framework for understanding fundamental principles of neural function.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
3
|
Abstract
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future.
Collapse
Affiliation(s)
- Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Grosshaderner Str. 2, D-82152 Martinsried, Germany.
| |
Collapse
|
4
|
Boddy AM, Harrison PW, Montgomery SH, Caravas JA, Raghanti MA, Phillips KA, Mundy NI, Wildman DE. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates. Genome Biol Evol 2017; 9:700-713. [PMID: 28391320 PMCID: PMC5381557 DOI: 10.1093/gbe/evx028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution.
Collapse
Affiliation(s)
- Amy M Boddy
- The Biodesign Institute, Arizona State University, Tempe, AZ.,Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI
| | - Peter W Harrison
- Department of Genetics Evolution & Environment, University College London, United Kingdom.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen H Montgomery
- Department of Genetics Evolution & Environment, University College London, United Kingdom.,Department of Zoology, University of Cambridge, United Kingdom
| | - Jason A Caravas
- Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | | | | | - Derek E Wildman
- Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI.,Department of Molecular & Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL
| |
Collapse
|
5
|
Harrison PW, Montgomery SH. Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach. BRAIN, BEHAVIOR AND EVOLUTION 2017; 89:274-285. [PMID: 28683440 PMCID: PMC5637284 DOI: 10.1159/000477432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure.
Collapse
Affiliation(s)
- Peter W. Harrison
- Department of Genetics, Evolution and Environment, University College London, London, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen H. Montgomery
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Abstract
Humans have tripled their brain size since they split from the chimpanzee lineage. A new paper provides for the first time functional evidence that an enhancer contributed to this expansion by accelerating the cell cycle in neural progenitors.
Collapse
Affiliation(s)
- Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Martinsried, Germany.
| |
Collapse
|
7
|
Neurodevelopmental LincRNA Microsyteny Conservation and Mammalian Brain Size Evolution. PLoS One 2015; 10:e0131818. [PMID: 26134977 PMCID: PMC4489927 DOI: 10.1371/journal.pone.0131818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/07/2015] [Indexed: 11/19/2022] Open
Abstract
The mammalian neocortex has undergone repeated selection for increases and decreases in size and complexity, often over relatively short evolutionary time. But because probing developmental mechanisms across many species is experimentally unfeasible, it is unknown whether convergent morphologies in distantly related species are regulated by conserved developmental programs. In this work, we have taken advantage of the abundance of available mammalian genomes to find evidence of selection on genomic regions putatively regulating neurogenesis in large- versus small-brained species. Using published fetal human RNA-seq data, we show that the gene-neighborhood (i.e., microsynteny) of long intergenic non-coding RNAs (lincRNAs) implicated in cortical development is differentially conserved in large-brained species, lending support to the hypothesis that lincRNAs regulating neurogenesis are selectively lost in small-brained species. We provide evidence that this is not a phenomenon attributable to lincRNA expressed in all tissue types and is therefore likely to represent an adaptive function in the evolution of neurogenesis. A strong correlation between transcription factor-adjacency and lincRNA sequence conservation reinforces this conclusion.
Collapse
|
8
|
Pulvers JN, Journiac N, Arai Y, Nardelli J. MCPH1: a window into brain development and evolution. Front Cell Neurosci 2015; 9:92. [PMID: 25870538 PMCID: PMC4376118 DOI: 10.3389/fncel.2015.00092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/28/2015] [Indexed: 12/21/2022] Open
Abstract
The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.
Collapse
Affiliation(s)
| | - Nathalie Journiac
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| | - Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Jeannette Nardelli
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| |
Collapse
|
9
|
Enard W. Mouse models of human evolution. Curr Opin Genet Dev 2014; 29:75-80. [DOI: 10.1016/j.gde.2014.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/13/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|