1
|
Huizhen Tang J, Solomon SS, Kohn A, Sussman ES. Distinguishing expectation and attention effects in processing temporal patterns of visual input. Brain Cogn 2024; 182:106228. [PMID: 39461075 PMCID: PMC11645222 DOI: 10.1016/j.bandc.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The current study investigated how the brain sets up expectations from stimulus regularities by evaluating the neural responses to expectations driven implicitly (by the stimuli themselves) and explicitly (by task demands). How the brain uses prior information to create expectations and what role attention plays in forming or holding predictions to efficiently respond to incoming sensory information is still debated. We presented temporal patterns of visual input while recording EEG under two different task conditions. When the patterns were task-relevant and pattern recognition was required to perform the button press task, three different event-related brain potentials (ERPs) were elicited, each reflecting a different aspect of pattern expectation. In contrast, when the patterns were task-irrelevant, none of the neural indicators of pattern recognition or pattern violation detection were observed to the same temporally structured sequences. Thus, results revealed a clear distinction between expectation and attention that was prompted by task requirements. These results provide complementary pieces of evidence that implicit exposure to a stimulus pattern may not be sufficient to drive neural effects of expectations that lead to predictive error responses. Task-driven attentional control can dissociate from stimulus-driven expectations, to effectively minimize distracting information and maximize attentional regulation.
Collapse
Affiliation(s)
- Joann Huizhen Tang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Selina S Solomon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Adam Kohn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Vision Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Elyse S Sussman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Otorhinolaryngology - Head & Neck Surgery, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Greco A, D'Alessandro M, Gallitto G, Rastelli C, Braun C, Caria A. Statistical Learning of Incidental Perceptual Regularities Induces Sensory Conditioned Cortical Responses. BIOLOGY 2024; 13:576. [PMID: 39194514 DOI: 10.3390/biology13080576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Statistical learning of sensory patterns can lead to predictive neural processes enhancing stimulus perception and enabling fast deviancy detection. Predictive processes have been extensively demonstrated when environmental statistical regularities are relevant to task execution. Preliminary evidence indicates that statistical learning can even occur independently of task relevance and top-down attention, although the temporal profile and neural mechanisms underlying sensory predictions and error signals induced by statistical learning of incidental sensory regularities remain unclear. In our study, we adopted an implicit sensory conditioning paradigm that elicited the generation of specific perceptual priors in relation to task-irrelevant audio-visual associations, while recording Electroencephalography (EEG). Our results showed that learning task-irrelevant associations between audio-visual stimuli resulted in anticipatory neural responses to predictive auditory stimuli conveying anticipatory signals of expected visual stimulus presence or absence. Moreover, we observed specific modulation of cortical responses to probabilistic visual stimulus presentation or omission. Pattern similarity analysis indicated that predictive auditory stimuli tended to resemble the response to expected visual stimulus presence or absence. Remarkably, Hierarchical Gaussian filter modeling estimating dynamic changes of prediction error signals in relation to differential probabilistic occurrences of audio-visual stimuli further demonstrated instantiation of predictive neural signals by showing distinct neural processing of prediction error in relation to violation of expected visual stimulus presence or absence. Overall, our findings indicated that statistical learning of non-salient and task-irrelevant perceptual regularities could induce the generation of neural priors at the time of predictive stimulus presentation, possibly conveying sensory-specific information about the predicted consecutive stimulus.
Collapse
Affiliation(s)
- Antonino Greco
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- MEG Center, University of Tübingen, 72076 Tübingen, Germany
| | - Marco D'Alessandro
- Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy
| | - Giuseppe Gallitto
- Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Clara Rastelli
- MEG Center, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Christoph Braun
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- MEG Center, University of Tübingen, 72076 Tübingen, Germany
| | - Andrea Caria
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
3
|
Sznabel D, Land R, Kopp B, Kral A. The relation between implicit statistical learning and proactivity as revealed by EEG. Sci Rep 2023; 13:15787. [PMID: 37737452 PMCID: PMC10516964 DOI: 10.1038/s41598-023-42116-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Environmental events often occur on a probabilistic basis but can sometimes be predicted based on specific cues and thus approached proactively. Incidental statistical learning enables the acquisition of knowledge about probabilistic cue-target contingencies. However, the neural mechanisms of statistical learning about contingencies (SLC), the required conditions for successful learning, and the role of implicit processes in the resultant proactive behavior are still debated. We examined changes in behavior and cortical activity during an SLC task in which subjects responded to visual targets. Unbeknown to them, there were three types of target cues associated with high-, low-, and zero target probabilities. About half of the subjects spontaneously gained explicit knowledge about the contingencies (contingency-aware group), and only they showed evidence of proactivity: shortened response times to predictable targets and enhanced event-related brain responses (cue-evoked P300 and contingent negative variation, CNV) to high probability cues. The behavioral and brain responses were strictly associated on a single-trial basis. Source reconstruction of the brain responses revealed activation of fronto-parietal brain regions associated with cognitive control, particularly the anterior cingulate cortex and precuneus. We also found neural correlates of SLC in the contingency-unaware group, but these were restricted to post-target latencies and visual association areas. Our results document a qualitative difference between explicit and implicit learning processes and suggest that in certain conditions, proactivity may require explicit knowledge about contingencies.
Collapse
Affiliation(s)
- Dorota Sznabel
- Department of Experimental Otology, Hannover Medical School, Hannover, Germany.
- Cluster of Excellence "Hearing4all", Hannover, Germany.
| | - Rüdiger Land
- Department of Experimental Otology, Hannover Medical School, Hannover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Department of Experimental Otology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence "Hearing4all", Hannover, Germany
| |
Collapse
|
4
|
Shalev N, Boettcher S, Wilkinson H, Scerif G, Nobre AC. Be there on time: Spatial-temporal regularities guide young children's attention in dynamic environments. Child Dev 2022; 93:1414-1426. [PMID: 35385168 PMCID: PMC9545323 DOI: 10.1111/cdev.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Children's ability to benefit from spatiotemporal regularities to detect goal-relevant targets was tested in a dynamic, extended context. Young adults and children (from a low-deprivation area school in the United Kingdom; N = 80; 5-6 years; 39 female; ethics approval did not permit individual-level race/ethnicity surveying) completed a dynamic visual-search task. Targets and distractors faded in and out of a display over seconds. Half of the targets appeared at predictable times and locations. Search performance in children was poorer overall. Nevertheless, they benefitted equivalently from spatiotemporal regularities, detecting more predictable than unpredictable targets. Children's benefits from predictions correlated positively with their attention. The study brings ecological validity to the study of attentional guidance in children, revealing striking behavioral benefits of dynamic experience-based predictions.
Collapse
Affiliation(s)
- Nir Shalev
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Sage Boettcher
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Hannah Wilkinson
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Gaia Scerif
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Anna C. Nobre
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Boettcher SEP, Stokes MG, Nobre AC, van Ede F. One Thing Leads to Another: Anticipating Visual Object Identity Based on Associative-Memory Templates. J Neurosci 2020; 40:4010-4020. [PMID: 32284338 PMCID: PMC7219293 DOI: 10.1523/jneurosci.2751-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
Probabilistic associations between stimuli afford memory templates that guide perception through proactive anticipatory mechanisms. A great deal of work has examined the behavioral consequences and human electrophysiological substrates of anticipation following probabilistic memory cues that carry spatial or temporal information to guide perception. However, less is understood about the electrophysiological substrates linked to anticipating the sensory content of events based on recurring associations between successive events. Here, we demonstrate behavioral and electrophysiological signatures of using associative-memory templates to guide perception, while equating spatial and temporal anticipation (experiments 1 and 2), as well as target probability and response demands (experiment 2). By recording the electroencephalogram in the two experiments (N = 55; 24 females), we show that two markers in human electrophysiology implicated in spatial and temporal anticipation also contribute to the anticipation of perceptual identity, as follows: attenuation of alpha-band oscillations and the contingent negative variation (CNV). Together, our results show that memory-guided identity templates proactively impact perception and are associated with anticipatory states of attenuated alpha oscillations and the CNV. Furthermore, by isolating object-identity anticipation from spatial and temporal anticipation, our results suggest a role for alpha attenuation and the CNV in specific visual content anticipation beyond general changes in neural excitability or readiness.SIGNIFICANCE STATEMENT Probabilistic associations between stimuli afford memory templates that guide perception through proactive anticipatory mechanisms. The current work isolates the behavioral benefits and electrophysiological signatures of memory-guided identity-based anticipation, while equating anticipation of space, time, motor responses, and task relevance. Our results show that anticipation of the specific identity of a forthcoming percept impacts performance and is associated with states of attenuated alpha oscillations and the contingent negative variation, extending previous work implicating these neural substrates in spatial and temporal preparatory attention. Together, this work bridges fields of attention, memory, and perception, providing new insights into the neural mechanisms that support complex attentional templates.
Collapse
Affiliation(s)
- Sage E P Boettcher
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Mark G Stokes
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
6
|
Cashdollar N, Ruhnau P, Weisz N, Hasson U. The Role of Working Memory in the Probabilistic Inference of Future Sensory Events. Cereb Cortex 2018; 27:2955-2969. [PMID: 27226445 DOI: 10.1093/cercor/bhw138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future.
Collapse
Affiliation(s)
- Nathan Cashdollar
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy
| | - Philipp Ruhnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy.,Division of Physiological Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg A-5020, Austria
| | - Nathan Weisz
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy.,Division of Physiological Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg A-5020, Austria
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy
| |
Collapse
|
7
|
Auksztulewicz R, Friston KJ, Nobre AC. Task relevance modulates the behavioural and neural effects of sensory predictions. PLoS Biol 2017; 15:e2003143. [PMID: 29206225 PMCID: PMC5730187 DOI: 10.1371/journal.pbio.2003143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/14/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. As natural environments change, animals need to continuously learn and update predictions about their current context to optimize behaviour. According to predictive coding, a general principle of brain function is the propagation of both neural predictions from hierarchically higher to lower brain regions and of the ensuing prediction-errors back up the cortical hierarchy. We show that the neural activity that signals internal predictions and prediction-errors depends on the current task or goals. We applied magnetoencephalography and computational modelling of behavioural data to a study in which human participants could generate spatial and temporal predictions about upcoming stimuli, while performing spatial or temporal tasks. We found that current context (task relevance) modulated the influence of predictions on behavioural and neural responses. At the level of behavioural responses, only the task-relevant predictions led to improvement in task performance. At the level of neural responses, we found that predictions and prediction-errors correlated with activity in different brain regions and in dissociable frequency bands—reflecting synchronized neural activity. Crucially, these specific neural signatures of prediction and prediction-error signalling were strongly modulated by their contextual relevance. Thus, our results show that current goals influence prediction and prediction-error signalling in the brain.
Collapse
Affiliation(s)
- Ryszard Auksztulewicz
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
- * E-mail:
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Anna C. Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|