1
|
Kobayashi Y. Asymmetric Brightness Effects With Dark Versus Light Glare-Like Stimuli. Iperception 2021; 12:2041669521993144. [PMID: 33738087 PMCID: PMC7934062 DOI: 10.1177/2041669521993144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The glare effect is a brightness illusion that has captured the attention of the vision community since its discovery. However, its photometrical reversal, which we refer to here as photometrical reversed glare (PRG) stimuli, remained relatively unexplored. We presented three experiments that sought to examine the perceived brightness of a target area surrounded by luminance gradients in PRG stimuli and compare them with conventional glare effect configurations. Experiment 1 measured the brightness of the central target area of PRG stimuli through an adjustment task; the results showed that the target appeared brighter than similar, comparative areas not surrounded by luminance gradients. This finding was unexpected given the recent report that PRG stimuli cause pupil dilation. Meanwhile, Experiments 2 and 3 implemented a rating task to further test the findings in Experiment 1. Again, the study found a robust brightening illusion in the target area of PRG stimuli in a wide range of target and background luminance. The results are discussed in comparison with the brightness enhancement of the glare effect.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Yuki Kobayashi, Ritsumeikan University, 2-150, Iwakuracho, Ibaraki, Osaka 567-8570, Japan.
| |
Collapse
|
2
|
O'Donoghue SI, Baldi BF, Clark SJ, Darling AE, Hogan JM, Kaur S, Maier-Hein L, McCarthy DJ, Moore WJ, Stenau E, Swedlow JR, Vuong J, Procter JB. Visualization of Biomedical Data. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013424] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid increase in volume and complexity of biomedical data requires changes in research, communication, and clinical practices. This includes learning how to effectively integrate automated analysis with high–data density visualizations that clearly express complex phenomena. In this review, we summarize key principles and resources from data visualization research that help address this difficult challenge. We then survey how visualization is being used in a selection of emerging biomedical research areas, including three-dimensional genomics, single-cell RNA sequencing (RNA-seq), the protein structure universe, phosphoproteomics, augmented reality–assisted surgery, and metagenomics. While specific research areas need highly tailored visualizations, there are common challenges that can be addressed with general methods and strategies. Also common, however, are poor visualization practices. We outline ongoing initiatives aimed at improving visualization practices in biomedical research via better tools, peer-to-peer learning, and interdisciplinary collaboration with computer scientists, science communicators, and graphic designers. These changes are revolutionizing how we see and think about our data.
Collapse
Affiliation(s)
- Seán I. O'Donoghue
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Eveleigh NSW 2015, Australia
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Kensington NSW 2033, Australia
| | - Benedetta Frida Baldi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
| | - Susan J. Clark
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia
| | - Aaron E. Darling
- The ithree Institute, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - James M. Hogan
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane QLD, 4000, Australia
| | - Sandeep Kaur
- School of Computer Science and Engineering, University of New South Wales (UNSW), Kensington NSW 2033, Australia
| | - Lena Maier-Hein
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Davis J. McCarthy
- European Bioinformatics Institute (EBI), European Molecular Biology Laboratory (EMBL), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- St. Vincent's Institute of Medical Research, Fitzroy VIC 3065, Australia
| | - William J. Moore
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Esther Stenau
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jason R. Swedlow
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jenny Vuong
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Eveleigh NSW 2015, Australia
| | - James B. Procter
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|