Wiens S, Szychowska M, Nilsson ME. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis.
PLoS One 2016;
11:e0146567. [PMID:
26741815 PMCID:
PMC4704804 DOI:
10.1371/journal.pone.0146567]
[Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/18/2015] [Indexed: 02/04/2023] Open
Abstract
Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN.
Collapse