1
|
Pecchinenda A, Gonzalez Pizzio AP, Salera C, Pazzaglia M. The role of arousal and motivation in emotional conflict resolution: Implications for spinal cord injury. Front Hum Neurosci 2022; 16:927622. [PMID: 36277056 PMCID: PMC9579344 DOI: 10.3389/fnhum.2022.927622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/20/2022] [Indexed: 12/28/2022] Open
Abstract
Under many conditions, emotional information is processed with priority and it may lead to cognitive conflict when it competes with task-relevant information. Accordingly, being able to ignore emotional information relies on cognitive control. The present perspective offers an integrative account of the mechanism that may underlie emotional conflict resolution in tasks involving response activation. We point to the contribution of emotional arousal and primed approach or avoidance motivation in accounting for emotional conflict resolution. We discuss the role of arousal in individuals with impairments in visceral pathways to the brain due to spinal cord lesions, as it may offer important insights into the “typical” mechanisms of emotional conflict control. We argue that a better understanding of emotional conflict control could be critical for adaptive and flexible behavior and has potential implications for the selection of appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia, Rome, Italy
- *Correspondence: Anna Pecchinenda,
| | - Adriana Patrizia Gonzalez Pizzio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Claudia Salera
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ph.D. Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia, Rome, Italy
- Mariella Pazzaglia,
| |
Collapse
|
2
|
Pais-Vieira C, Gaspar P, Matos D, Alves LP, da Cruz BM, Azevedo MJ, Gago M, Poleri T, Perrotta A, Pais-Vieira M. Embodiment Comfort Levels During Motor Imagery Training Combined With Immersive Virtual Reality in a Spinal Cord Injury Patient. Front Hum Neurosci 2022; 16:909112. [PMID: 35669203 PMCID: PMC9163805 DOI: 10.3389/fnhum.2022.909112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023] Open
Abstract
Brain-machine interfaces combining visual, auditory, and tactile feedback have been previously used to generate embodiment experiences during spinal cord injury (SCI) rehabilitation. It is not known if adding temperature to these modalities can result in discomfort with embodiment experiences. Here, comfort levels with the embodiment experiences were investigated in an intervention that required a chronic pain SCI patient to generate lower limb motor imagery commands in an immersive environment combining visual (virtual reality -VR), auditory, tactile, and thermal feedback. Assessments were made pre-/ post-, throughout the intervention (Weeks 0-5), and at 7 weeks follow up. Overall, high levels of embodiment in the adapted three-domain scale of embodiment were found throughout the sessions. No significant adverse effects of VR were reported. Although sessions induced only a modest reduction in pain levels, an overall reduction occurred in all pain scales (Faces, Intensity, and Verbal) at follow up. A high degree of comfort in the comfort scale for the thermal-tactile sleeve, in both the thermal and tactile feedback components of the sleeve was reported. This study supports the feasibility of combining multimodal stimulation involving visual (VR), auditory, tactile, and thermal feedback to generate embodiment experiences in neurorehabilitation programs.
Collapse
Affiliation(s)
- Carla Pais-Vieira
- Centro de Investigação Interdisciplinar em Saúde (CIIS), Instituto de Ciências da Saúde (ICS), Universidade Católica Portuguesa, Porto, Portugal
| | - Pedro Gaspar
- Centro de Investigação em Ciência e Tecnologia das Artes (CITAR), Universidade Católica Portuguesa, Porto, Portugal
| | - Demétrio Matos
- ID+ (Instituto de Investigação em Design, Média e Cultura), Instituto Politécnico do Cávado e do Ave, Vila Frescainha, Portugal
| | - Leonor Palminha Alves
- Human Robotics Group, Centro de Sistemas Inteligentes do IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Bárbara Moreira da Cruz
- Serviço de Medicina Física e Reabilitação, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Maria João Azevedo
- Serviço de Medicina Física e Reabilitação, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Miguel Gago
- Serviço de Neurologia, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Tânia Poleri
- Plano de Ação para Apoio aos Deficientes Militares, Porto, Portugal
| | - André Perrotta
- Centre for Informatics and Systems of the University of Coimbra (CISUC), Coimbra, Portugal
| | - Miguel Pais-Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Forte G, Leemhuis E, Favieri F, Casagrande M, Giannini AM, De Gennaro L, Pazzaglia M. Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach. J Pers Med 2022; 12:jpm12030380. [PMID: 35330380 PMCID: PMC8954494 DOI: 10.3390/jpm12030380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Endowed with inherent flexibility, wearable robotic technologies are powerful devices that are known to extend bodily functionality to assist people with spinal cord injuries (SCIs). However, rather than considering the specific psychological and other physiological needs of their users, these devices are specifically designed to compensate for motor impairment. This could partially explain why they still cannot be adopted as an everyday solution, as only a small number of patients use lower-limb exoskeletons. It remains uncertain how these devices can be appropriately embedded in mental representations of the body. From this perspective, we aimed to highlight the homeostatic role of autonomic and interoceptive signals and their possible integration in a personalized experience of exoskeleton overground walking. To ensure personalized user-centered robotic technologies, optimal robotic devices should be designed and adjusted according to the patient's condition. We discuss how embodied approaches could emerge as a means of overcoming the hesitancy toward wearable robots.
Collapse
Affiliation(s)
- Giuseppe Forte
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (G.F.); (F.F.)
| | - Erik Leemhuis
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Favieri
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (G.F.); (F.F.)
| | - Maria Casagrande
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Università di Rome “Sapienza”, Via Degli Apuli 1, 00185 Rome, Italy;
| | - Anna Maria Giannini
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
| | - Luigi De Gennaro
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
4
|
Leemhuis E, Giuffrida V, De Martino ML, Forte G, Pecchinenda A, De Gennaro L, Giannini AM, Pazzaglia M. Rethinking the Body in the Brain after Spinal Cord Injury. J Clin Med 2022; 11:jcm11020388. [PMID: 35054089 PMCID: PMC8780443 DOI: 10.3390/jcm11020388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injuries (SCI) are disruptive neurological events that severly affect the body leading to the interruption of sensorimotor and autonomic pathways. Recent research highlighted SCI-related alterations extend beyond than the expected network, involving most of the central nervous system and goes far beyond primary sensorimotor cortices. The present perspective offers an alternative, useful way to interpret conflicting findings by focusing on the deafferented and deefferented body as the central object of interest. After an introduction to the main processes involved in reorganization according to SCI, we will focus separately on the body regions of the head, upper limbs, and lower limbs in complete, incomplete, and deafferent SCI participants. On one hand, the imprinting of the body’s spatial organization is entrenched in the brain such that its representation likely lasts for the entire lifetime of patients, independent of the severity of the SCI. However, neural activity is extremely adaptable, even over short time scales, and is modulated by changing conditions or different compensative strategies. Therefore, a better understanding of both aspects is an invaluable clinical resource for rehabilitation and the successful use of modern robotic technologies.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Giuseppe Forte
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (G.F.); (M.P.); Tel.: +39-6-49917633 (M.P.)
| | - Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (G.F.); (M.P.); Tel.: +39-6-49917633 (M.P.)
| |
Collapse
|
5
|
Leemhuis E, Giuffrida V, Giannini AM, Pazzaglia M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci 2021; 11:1201. [PMID: 34573221 PMCID: PMC8472645 DOI: 10.3390/brainsci11091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain (NP) is a chronic, debilitating, and resistant form of pain. The onset rate of NP following spinal cord injuries (SCI) is high and may reduce the quality of life more than the sensorimotor loss itself. The long-term ineffectiveness of current treatments in managing symptoms and counteracting maladaptive plasticity highlights the need to find alternative therapeutic approaches. Virtual reality (VR) is possibly the best way to administer the specific illusory or reality-like experience and promote behavioral responses that may be effective in mitigating the effects of long-established NP. This approach aims to promote a more systematic adoption of VR-related techniques in pain research and management procedures, highlighting the encouraging preliminary results in SCI. We suggest that the multisensory modulation of the sense of agency and ownership by residual body signals may produce positive responses in cases of brain-body disconnection. First, we focus on the transversal role embodiment and how multisensory and environmental or artificial stimuli modulate illusory sensations of bodily presence and ownership. Then, we present a brief overview of the use of VR in healthcare and pain management. Finally, we discus research experiences which used VR in patients with SCI to treating NP, including the most recent combinations of VR with further stimulation techniques.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
6
|
De Martino ML, De Bartolo M, Leemhuis E, Pazzaglia M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci 2021; 11:brainsci11081084. [PMID: 34439702 PMCID: PMC8391959 DOI: 10.3390/brainsci11081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.
Collapse
Affiliation(s)
- Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mina De Bartolo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
| | - Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-6-49917633
| |
Collapse
|
7
|
Liesner M, Hinz NA, Kunde W. How Action Shapes Body Ownership Momentarily and Throughout the Lifespan. Front Hum Neurosci 2021; 15:697810. [PMID: 34295232 PMCID: PMC8290176 DOI: 10.3389/fnhum.2021.697810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objects which a human agent controls by efferent activities (such as real or virtual tools) can be perceived by the agent as belonging to his or her body. This suggests that what an agent counts as “body” is plastic, depending on what she or he controls. Yet there are possible limitations for such momentary plasticity. One of these limitations is that sensations stemming from the body (e.g., proprioception) and sensations stemming from objects outside the body (e.g., vision) are not integrated if they do not sufficiently “match”. What “matches” and what does not is conceivably determined by long–term experience with the perceptual changes that body movements typically produce. Children have accumulated less sensorimotor experience than adults have. Consequently, they express higher flexibility to integrate body-internal and body-external signals, independent of their “match” as suggested by rubber hand illusion studies. However, children’s motor performance in tool use is more affected by mismatching body-internal and body-external action effects than that of adults, possibly because of less developed means to overcome such mismatches. We review research on perception-action interactions, multisensory integration, and developmental psychology to build bridges between these research fields. By doing so, we account for the flexibility of the sense of body ownership for actively controlled events and its development through ontogeny. This gives us the opportunity to validate the suggested mechanisms for generating ownership by investigating their effects in still developing and incomplete stages in children. We suggest testable predictions for future studies investigating both body ownership and motor skills throughout the lifespan.
Collapse
Affiliation(s)
- Marvin Liesner
- Department of Cognitive Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nina-Alisa Hinz
- Department of Psychology, Ludwigs-Maximilians-Universität München, Munich, Germany
| | - Wilfried Kunde
- Department of Cognitive Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
The contemporary model of vertebral column joint dysfunction and impact of high-velocity, low-amplitude controlled vertebral thrusts on neuromuscular function. Eur J Appl Physiol 2021; 121:2675-2720. [PMID: 34164712 PMCID: PMC8416873 DOI: 10.1007/s00421-021-04727-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Purpose There is growing evidence that vertebral column function and dysfunction play a vital role in neuromuscular control. This invited review summarises the evidence about how vertebral column dysfunction, known as a central segmental motor control (CSMC) problem, alters neuromuscular function and how spinal adjustments (high-velocity, low-amplitude or HVLA thrusts directed at a CSMC problem) and spinal manipulation (HVLA thrusts directed at segments of the vertebral column that may not have clinical indicators of a CSMC problem) alters neuromuscular function.
Methods The current review elucidates the peripheral mechanisms by which CSMC problems, the spinal adjustment or spinal manipulation alter the afferent input from the paravertebral tissues. It summarises the contemporary model that provides a biologically plausible explanation for CSMC problems, the manipulable spinal lesion. This review also summarises the contemporary, biologically plausible understanding about how spinal adjustments enable more efficient production of muscular force. The evidence showing how spinal dysfunction, spinal manipulation and spinal adjustments alter central multimodal integration and motor control centres will be covered in a second invited review. Results Many studies have shown spinal adjustments increase voluntary force and prevent fatigue, which mainly occurs due to altered supraspinal excitability and multimodal integration. The literature suggests physical injury, pain, inflammation, and acute or chronic physiological or psychological stress can alter the vertebral column’s central neural motor control, leading to a CSMC problem. The many gaps in the literature have been identified, along with suggestions for future studies. Conclusion Spinal adjustments of CSMC problems impact motor control in a variety of ways. These include increasing muscle force and preventing fatigue. These changes in neuromuscular function most likely occur due to changes in supraspinal excitability. The current contemporary model of the CSMC problem, and our understanding of the mechanisms of spinal adjustments, provide a biologically plausible explanation for how the vertebral column’s central neural motor control can dysfunction, can lead to a self-perpetuating central segmental motor control problem, and how HVLA spinal adjustments can improve neuromuscular function.
Collapse
|
9
|
Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041819. [PMID: 33668438 PMCID: PMC7918193 DOI: 10.3390/ijerph18041819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
Abstract
Increasingly, refined virtual reality (VR) techniques allow for the simultaneous and coherent stimulation of multiple sensory and motor domains. In some clinical interventions, such as those related to spinal cord injuries (SCIs), the impact of VR on people's multisensory perception, movements, attitudes, and even modulations of socio-cognitive aspects of their behavior may influence every phase of their rehabilitation treatment, from the acute to chronic stages. This work describes the potential advantages of using first-person-perspective VR to treat SCIs and its implications for manipulating sensory-motor feedback to alter body signals. By situating a patient with SCI in a virtual environment, sensorial perceptions and motor intention can be enriched into a more coherent bodily experience that also promotes processes of neural regeneration and plasticity. In addition to the great potential of research, the most significant areas of interest concern is managing neuropathic pain, motor rehabilitation, and psychological well-being.
Collapse
|
10
|
Acquisition of Ownership Illusion with Self-Disownership in Neurological Patients. Brain Sci 2020; 10:brainsci10030170. [PMID: 32183477 PMCID: PMC7139520 DOI: 10.3390/brainsci10030170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
The multisensory regions in frontoparietal cortices play a crucial role in the sense of body and self. Disrupting this sense may lead to a feeling of disembodiment, or more generally, a sense of disownership. Experimentally, this altered consciousness disappears during illusory own-body perceptions, increasing the intensity of perceived ownership for an external virtual limb. In many clinical conditions, particularly in individuals with a discontinuous or absent sense of bodily awareness, the brain may effortlessly create a convincing feeling of body ownership over a surrogate body or body part. The immediate visual input dominates the current bodily state and induces rapid plastic adaptation that reconfigures the dynamics of bodily representation, allowing the brain to acquire an alternative sense of body and self. Investigating strategies to deconstruct the lack of a normal sense of bodily ownership, especially after a neurological injury, may aid the selection of appropriate clinical treatment.
Collapse
|
11
|
|
12
|
Pazzaglia M, Galli G. Action Observation for Neurorehabilitation in Apraxia. Front Neurol 2019; 10:309. [PMID: 31001194 PMCID: PMC6456663 DOI: 10.3389/fneur.2019.00309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Neurorehabilitation and brain stimulation studies of post-stroke patients suggest that action-observation effects can lead to rapid improvements in the recovery of motor functions and long-term motor cortical reorganization. Apraxia is a clinically important disorder characterized by marked impairment in representing and performing skillful movements [gestures], which limits many daily activities and impedes independent functioning. Recent clinical research has revealed errors of visuo-motor integration in patients with apraxia. This paper presents a rehabilitative perspective focusing on the possibility of action observation as a therapeutic treatment for patients with apraxia. This perspective also outlines impacts on neurorehabilitation and brain repair following the reinforcement of the perceptual-motor coupling. To date, interventions based primarily on action observation in apraxia have not been undertaken.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
13
|
Scivoletto G, Galli G, Torre M, Molinari M, Pazzaglia M. The Overlooked Outcome Measure for Spinal Cord Injury: Use of Assistive Devices. Front Neurol 2019; 10:272. [PMID: 30967836 PMCID: PMC6438886 DOI: 10.3389/fneur.2019.00272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although several outcome measures are used to assess various areas of interest regarding spinal cord injuries (SCIs), little is known about the frequency of their use, and the ways in which they transform shared knowledge into implemented practices. Herein, 800 professionals from the International Spinal Cord Society, especially trained for caring in patients with SCI, were invited to respond to an Internet survey collecting information on the use of standardized measures in daily clinical practices. We asked both clinicians and researchers with different areas of interest about their use of functional outcome measures, and, in particular, which scales they habitually use to assess various aspects of clinical practice and rehabilitation. We selected a set of rating scales, which were validated for measuring SCIs (http://www.scireproject.com/outcome-measures). The results show that the areas of interest assessed by most of the participants were neurological status, upper limb, lower limb gait, pain, spasticity, self-care, and daily living. The most widely used rating scales were the spinal cord independence measure, the functional independence measure and the International Standards for Neurological Classification of Spinal Cord Injury. Instead, the majority of respondents did not evaluate the use of assistive technology. Despite the availability of several outcome scales, the practice of evaluating SCIs with standardized measures for assistive technologies and wheelchair mobility is still not widespread, even though it is a high priority in the rehabilitation of SCI patients. The results emphasize the need for a more thorough knowledge and use of outcome scales, thus improving the quality of assistive device evaluation.
Collapse
Affiliation(s)
- Giorgio Scivoletto
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Spinal Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Galli
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Monica Torre
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Spinal Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Molinari
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mariella Pazzaglia
- Spinal Cord Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J Clin Med 2019; 8:jcm8020182. [PMID: 30717476 PMCID: PMC6406464 DOI: 10.3390/jcm8020182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Many neuropsychological theories agree that the brain maintains a relatively persistent representation of one’s own body, as indicated by vivid “phantom” experiences. It remains unclear how the loss of sensory and motor information contributes to the presence of this representation. Here, we focus on new empirical and theoretical evidence of phantom sensations following damage to or an anesthetic block of the brachial plexus. We suggest a crucial role of this structure in understanding the interaction between peripheral and central mechanisms in health and in pathology. Studies of brachial plexus function have shed new light on how neuroplasticity enables “somatotopic interferences”, including pain and body awareness. Understanding the relations among clinical disorders, their neural substrate, and behavioral outcomes may enhance methods of sensory rehabilitation for phantom limbs.
Collapse
|
15
|
Pazzaglia M, Scivoletto G, Giannini AM, Leemhuis E. My hand in my ear: a phantom limb re-induced by the illusion of body ownership in a patient with a brachial plexus lesion. PSYCHOLOGICAL RESEARCH 2018; 83:196-204. [DOI: 10.1007/s00426-018-1121-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
|
16
|
Pazzaglia M, Haggard P, Scivoletto G, Molinari M, Lenggenhager B. Pain and somatic sensation are transiently normalized by illusory body ownership in a patient with spinal cord injury. Restor Neurol Neurosci 2018; 34:603-13. [PMID: 27080071 DOI: 10.3233/rnn-150611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Spinal cord injury (SCI), a profound impairment of sensorimotor functions, is often associated with pain related phenomena, including mechanical allodynia, a condition in which non-painful tactile sensation is perceived as pain. Pain and somatic sensation are undeniable markers of normal bodily awareness. However, the mechanism by which they are integrated into a coherent sense of the bodily self remains largely unclear. In this study, we investigated the effect of high-level multisensory manipulation on subjective experiences of pain, touch, and body-ownership. METHODS We administered visuo-tactile stimulation based on the rubber hand illusion. In a longitudinal study, we compared the strength of the illusion in a male with SCI, who initially had lost somatosensation in all his fingers, but a few months later reported signs of tactile allodynia restricted to the left C6-dermatome. RESULTS After the restoration of some somatosensation, even if it were painful, synchronous but not asynchronous visuo-tactile stimulation induced body illusion. Previously painful stimuli were temporarily perceived as less painful, and the patient further regained tactile sensations in adjacent numb areas. CONCLUSIONS The sensations of touch and pain are mutually influenced and inextricably linked to a coherent representation of one's own body. Multisensory manipulations affecting the perception and representation of the body might thus offer a powerful opportunity to mitigate nociceptive and somatic abnormalities.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome "La Sapienza, " Via dei Marsi, Rome, Italy.,IRCCS Santa Lucia Foundation, Via Ardeatina, Rome, Italy
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | | - Marco Molinari
- IRCCS Santa Lucia Foundation, Via Ardeatina, Rome, Italy
| | - Bigna Lenggenhager
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Switzerland
| |
Collapse
|
17
|
Zantedeschi M, Pazzaglia M. Commentary: Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain. Front Hum Neurosci 2016; 10:544. [PMID: 27833544 PMCID: PMC5081357 DOI: 10.3389/fnhum.2016.00544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Marta Zantedeschi
- Department of Psychology, University of Rome “La Sapienza”Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza”Rome, Italy
- IRCCS Santa Lucia FoundationRome, Italy
| |
Collapse
|
18
|
Luongo MA, Pazzaglia M. Commentary: Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other. Front Hum Neurosci 2016; 10:526. [PMID: 27818630 PMCID: PMC5073138 DOI: 10.3389/fnhum.2016.00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza”Rome, Italy
- Clinical Neuroscience Lab, IRCCS Santa Lucia FoundationRome, Italy
- *Correspondence: Mariella Pazzaglia
| |
Collapse
|
19
|
Pazzaglia M, Zantedeschi M. Plasticity and Awareness of Bodily Distortion. Neural Plast 2016; 2016:9834340. [PMID: 27630779 PMCID: PMC5007354 DOI: 10.1155/2016/9834340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022] Open
Abstract
Knowledge of the body is filtered by perceptual information, recalibrated through predominantly innate stored information, and neurally mediated by direct sensory motor information. Despite multiple sources, the immediate prediction, construction, and evaluation of one's body are distorted. The origins of such distortions are unclear. In this review, we consider three possible sources of awareness that inform body distortion. First, the precision in the body metric may be based on the sight and positioning sense of a particular body segment. This view provides information on the dual nature of body representation, the reliability of a conscious body image, and implicit alterations in the metrics and positional correspondence of body parts. Second, body awareness may reflect an innate organizational experience of unity and continuity in the brain, with no strong isomorphism to body morphology. Third, body awareness may be based on efferent/afferent neural signals, suggesting that major body distortions may result from changes in neural sensorimotor experiences. All these views can be supported empirically, suggesting that body awareness is synthesized from multimodal integration and the temporal constancy of multiple body representations. For each of these views, we briefly discuss abnormalities and therapeutic strategies for correcting the bodily distortions in various clinical disorders.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza,” Via dei Marsi 78, 00185 Rome, Italy
- IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Marta Zantedeschi
- Department of Psychology, University of Rome “La Sapienza,” Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
20
|
Pazzaglia M, Molinari M. The re-embodiment of bodies, tools, and worlds after spinal cord injury: An intricate picture: Reply to comments on "The embodiment of assistive devices-From wheelchair to exoskeleton". Phys Life Rev 2016; 16:191-4. [PMID: 26917254 DOI: 10.1016/j.plrev.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome 'La Sapienza', Via dei Marsi 78, 00185 Rome, Italy.
| | - Marco Molinari
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
21
|
Pazzaglia M, Molinari M. The embodiment of assistive devices-from wheelchair to exoskeleton. Phys Life Rev 2015; 16:163-75. [PMID: 26708357 DOI: 10.1016/j.plrev.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 01/18/2023]
Abstract
Spinal cord injuries (SCIs) place a heavy burden on the healthcare system and have a high personal impact and marked socio-economic consequences. Clinically, no absolute cure for these conditions exists. However, in recent years, there has been an increased focus on new robotic technologies that can change the frame we think about the prognosis for recovery and for treating some functions of the body affected after SCIs. This review has two goals. The first is to assess the possibility of the embodiment of functional assistive tools after traumatic disruption of the neural pathways between the brain and the body. To this end, we will examine how altered sensorimotor information modulates the sense of the body in SCI. The second goal is to map the phenomenological experience of using external tools that typically extend the potential of the body physically impaired by SCI. More specifically, we will focus on the difference between the perception of one's physically augmented and non-augmented affected body based on observable and measurable behaviors. We discuss potential clinical benefits of enhanced embodiment of the external objects by way of multisensory interventions. This review argues that the future evolution of human robotic technologies will require adopting an embodied approach, taking advantage of brain plasticity to allow bionic limbs to be mapped within the neural circuits of physically impaired individuals.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome 'La Sapienza', Via dei Marsi 78, 00185 Rome, Italy; IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy.
| | - Marco Molinari
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
22
|
Galli G, Lenggenhager B, Scivoletto G, Molinari M, Pazzaglia M. Don't look at my wheelchair! The plasticity of longlasting prejudice. MEDICAL EDUCATION 2015; 49:1239-1247. [PMID: 26611189 DOI: 10.1111/medu.12834] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/08/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
CONTEXT Scientific research has consistently shown that prejudicial behaviour may contribute to discrimination and disparities in social groups. However, little is known about whether and how implicit assumptions and direct contact modulate the interaction and quality of professional interventions in education and health contexts. OBJECTIVES This study was designed to examine implicit and explicit attitudes towards wheelchair users. METHODS We investigated implicit and explicit attitudes towards wheelchair users in three different groups: patients with traumatic spinal cord injury (SCI); health professionals with intense contact with wheelchair users, and healthy participants without personal contact with wheelchair users. To assess the short-term plasticity of prejudices, we used a valid intervention that aims to change implicit attitudes through brief direct contact with a patient who uses a wheelchair in an ecologically valid real-life interaction. RESULTS We found that: (i) wheelchair users with SCI held positive explicit but negative implicit attitudes towards their novel in-group; (ii) the amount of experience with wheelchair users affected implicit attitudes among health professionals, and (iii) interacting with a patient with SCI who contradicts prejudices modulated implicit negative bias towards wheelchair users in healthy participants. CONCLUSIONS The use of a wheelchair immediately and profoundly affects how a person is perceived. However, our findings highlight the dynamic nature of perceptions of social identity, which are not only sensitive to personal beliefs, but also highly permeable to intergroup interactions. Having direct contact with people with disabilities might foster positive attitudes in multidisciplinary health care teams. Such interventions could be integrated into medical education programmes to successfully prevent or reduce hidden biases in a new generation of health professionals and to increase the general acceptance of disability in patients.
Collapse
Affiliation(s)
- Giulia Galli
- IRCCS (Istituto di Recovero e Cura a Carattere Scientifico [Research Hospital]) Santa Lucia Foundation, Rome, Italy
| | - Bigna Lenggenhager
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Giorgio Scivoletto
- IRCCS (Istituto di Recovero e Cura a Carattere Scientifico [Research Hospital]) Santa Lucia Foundation, Rome, Italy
| | - Marco Molinari
- IRCCS (Istituto di Recovero e Cura a Carattere Scientifico [Research Hospital]) Santa Lucia Foundation, Rome, Italy
| | - Mariella Pazzaglia
- IRCCS (Istituto di Recovero e Cura a Carattere Scientifico [Research Hospital]) Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
23
|
Pazzaglia M, Galli G. Translating novel findings of perceptual-motor codes into the neuro-rehabilitation of movement disorders. Front Behav Neurosci 2015; 9:222. [PMID: 26347631 PMCID: PMC4543860 DOI: 10.3389/fnbeh.2015.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Dipartimento di Psicologia, Università degli Studi di Roma "La Sapienza" Rome, Italy ; IRCCS Santa Lucia Foundation Rome, Italy
| | | |
Collapse
|
24
|
Galli G, Pazzaglia M. Commentary on: "The body social: an enactive approach to the self". A tool for merging bodily and social self in immobile individuals. Front Psychol 2015; 6:305. [PMID: 25852619 PMCID: PMC4365544 DOI: 10.3389/fpsyg.2015.00305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Mariella Pazzaglia
- IRCCS Santa Lucia Foundation Rome, Italy ; Department of Psychology, University of Rome "La Sapienza," Rome, Italy
| |
Collapse
|