1
|
Poikonen H, Zaluska T, Wang X, Magno M, Kapur M. Nonlinear and machine learning analyses on high-density EEG data of math experts and novices. Sci Rep 2023; 13:8012. [PMID: 37198273 DOI: 10.1038/s41598-023-35032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Current trend in neurosciences is to use naturalistic stimuli, such as cinema, class-room biology or video gaming, aiming to understand the brain functions during ecologically valid conditions. Naturalistic stimuli recruit complex and overlapping cognitive, emotional and sensory brain processes. Brain oscillations form underlying mechanisms for such processes, and further, these processes can be modified by expertise. Human cortical functions are often analyzed with linear methods despite brain as a biological system is highly nonlinear. This study applies a relatively robust nonlinear method, Higuchi fractal dimension (HFD), to classify cortical functions of math experts and novices when they solve long and complex math demonstrations in an EEG laboratory. Brain imaging data, which is collected over a long time span during naturalistic stimuli, enables the application of data-driven analyses. Therefore, we also explore the neural signature of math expertise with machine learning algorithms. There is a need for novel methodologies in analyzing naturalistic data because formulation of theories of the brain functions in the real world based on reductionist and simplified study designs is both challenging and questionable. Data-driven intelligent approaches may be helpful in developing and testing new theories on complex brain functions. Our results clarify the different neural signature, analyzed by HFD, of math experts and novices during complex math and suggest machine learning as a promising data-driven approach to understand the brain processes in expertise and mathematical cognition.
Collapse
Affiliation(s)
- Hanna Poikonen
- Learning Sciences and Higher Education, ETH Zurich, Clausiusstrasse 59 RZ J2, 8092, Zurich, Switzerland.
| | - Tomasz Zaluska
- Integrated Systems Laboratory, ETH Zurich, Zurich, Switzerland
| | - Xiaying Wang
- Integrated Systems Laboratory, ETH Zurich, Zurich, Switzerland
| | - Michele Magno
- Integrated Systems Laboratory, ETH Zurich, Zurich, Switzerland
| | - Manu Kapur
- Learning Sciences and Higher Education, ETH Zurich, Clausiusstrasse 59 RZ J2, 8092, Zurich, Switzerland
| |
Collapse
|
2
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
3
|
Korem N, Cohen LD, Rubinsten O. The link between math anxiety and performance does not depend on working memory: A network analysis study. Conscious Cogn 2022; 100:103298. [PMID: 35217396 DOI: 10.1016/j.concog.2022.103298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Math anxiety (MA) and working memory (WM) influence math performance. Yet the interplay between them is not fully understood. Inconsistent results possibly stem from the multicomponent structure of math performance and WM. Using network analysis approach, we investigated the drivers of the MA, WM and math performance edges, and the contribution of each node to the network. First, 116 women completed a battery of tests and questionnaires. Second, we explored the generalizability of our model by applying it to a new data-set (Skagerlund et al., 2019; conceptual replication). The results revealed: (1) the links between MA and WM depend on specific task properties, specifically, WM tasks that require manipulation of numbers; (2) WM and MA are independently linked to math performance; and (3) each WM task is associated with different math abilities. The study provides a strong and reliable model showing the direct effects of math anxiety on math performance.
Collapse
Affiliation(s)
- Nachshon Korem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Israel.
| | - Lital Daches Cohen
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Israel; Department of Learning Disabilities, University of Haifa, Israel
| | - Orly Rubinsten
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Israel; Department of Learning Disabilities, University of Haifa, Israel
| |
Collapse
|
4
|
Math Anxiety Is Related to Math Difficulties and Composed of Emotion Regulation and Anxiety Predisposition: A Network Analysis Study. Brain Sci 2021; 11:brainsci11121609. [PMID: 34942911 PMCID: PMC8699086 DOI: 10.3390/brainsci11121609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Current evidence suggests emotion regulation is an important factor in both math anxiety and math performance, but the interplay between these constructs is unexamined. Given the multicomponent structure of math anxiety, emotion regulation, and math performance, here, we aimed to provide a comprehensive model of the underlying nature of the links between these latent variables. Using the innovative network analysis approach, the study visualized the underlying links between directly observable and measurable variables that might be masked by traditional statistical approaches. One hundred and seventeen adults completed a battery of tests and questionnaires on math anxiety, emotion regulation, and math performance. The results revealed: (1) state math anxiety (the emotional experience in math-related situations), rather than trait math anxiety, was linked to anxiety predisposition, subjective valence of math information, and difficulties in emotion regulation; (2) the link between state math anxiety and math performance partialed out the link between trait math anxiety and performance. The study innovatively demonstrates the need to differentiate between traits and tendencies to the actual emotional experience and emotion regulation used in math anxiety. The results have important implications for the theoretical understanding of math anxiety and future discussions and work in the field.
Collapse
|
5
|
Using collaborative action research to resolve practical and philosophical challenges in educational neuroscience. Trends Neurosci Educ 2019; 16:100116. [PMID: 31540672 DOI: 10.1016/j.tine.2019.100116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Researchers routinely cite neuromyths and neurorealism as barriers preventing teachers from effectively applying brain research to practice. A primary goal within educational neuroscience (EN), is to provide teachers with professional development that allows them to overcome these barriers and gain agency in developing the field. Yet, the EN literature does not provide a tangible framework for developing teachers' philosophical perspectives regarding neuroscience in education. PURPOSE Here, we review the history of teacher neuroscience professional development and identify challenges in developing EN teacher learning programs. Next, we present 'learning study', a form of collaborative action research, as a framework for addressing these challenges. CONCLUSION We highlight how learning study could be used as an appropriate model for exploring future classroom applications of theoretical neuroscience.
Collapse
|
6
|
Daches Cohen L, Rubinsten O. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School. Front Psychol 2017; 8:1939. [PMID: 29180973 PMCID: PMC5693896 DOI: 10.3389/fpsyg.2017.01939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
Collapse
Affiliation(s)
- Lital Daches Cohen
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Department of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Orly Rubinsten
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Department of Learning Disabilities, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Abstract
Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to "many" with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals.
Collapse
|
8
|
Rubinsten O, Eidlin H, Wohl H, Akibli O. Attentional bias in math anxiety. Front Psychol 2015; 6:1539. [PMID: 26528208 PMCID: PMC4607867 DOI: 10.3389/fpsyg.2015.01539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/23/2015] [Indexed: 11/13/2022] Open
Abstract
Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.
Collapse
Affiliation(s)
- Orly Rubinsten
- *Correspondence: Orly Rubinsten, Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Department of Learning Disabilities, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, 3498838 Haifa, Israel,
| | | | | | | |
Collapse
|