1
|
Lin R, Zhang JJ, Zhong L, Chan SSY, Kwong PWH, Lorentz L, Shaikh UJ, Lam TLH, Mehler DMA, Fong KNK. Does repetitive transcranial magnetic stimulation have a beneficial effect on improving unilateral spatial neglect caused by stroke? A meta-analysis. J Neurol 2024; 271:6494-6507. [PMID: 39196395 PMCID: PMC11446973 DOI: 10.1007/s00415-024-12612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
This review aimed to assess the effect of repetitive transcranial magnetic stimulation (rTMS) in improving post-stroke unilateral spatial neglect (USN) using a meta-analysis. Further, we aimed to identify any association between rTMS parameters, patient demographics, and treatment effect sizes using subgroup analyses and meta-regression. A literature search was conducted through four databases from inception to March 6, 2024, to retrieve all relevant controlled trials investigating the effects of rTMS on symptoms of USN in post-stroke patients. Overall, rTMS significantly improved post-stroke USN, as measured by the line bisection test (Hedges' g = - 1.301, p < 0.0001), the cancelation test (Hedge's g = - 1.512, p < 0.0001), and the Catherine Bergego Scale (Hedges'g = - 0.770, p < 0.0001), compared to sham stimulation. Subgroup analysis found that generally larger effect sizes following excitatory rTMS across several outcome measures, indicating that excitatory rTMS on the ipsilesional hemisphere may be more effective than inhibitory rTMS on the contralesional hemisphere in ameliorating neglect symptoms. Meta-regression analysis of the line bisection test showed a significant difference in the chronicity of stroke patients, suggesting that rTMS may be more effective for USN in patients at the acute stage (within 3 months since stroke) than in those at the post-acute stage (p = 0.035). In conclusion, rTMS appears to be effective in promoting recovery from post-stroke USN. Excitatory protocols and early intervention may enhance recovery outcomes for neglect behaviors in post-stroke survivors.
Collapse
Affiliation(s)
- Ruixuan Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| | - Lingling Zhong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Sofina S Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Patrick W H Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Lukas Lorentz
- Division of Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Usman Jawed Shaikh
- Division of Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tommy L H Lam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - David M A Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
2
|
Sacco L, Ceroni M, Pacifico D, Zerboni G, Rossi S, Galati S, Caverzasio S, Kaelin-Lang A, Riccitelli GC. Transcranial Magnetic Stimulation Improves Executive Functioning through Modulation of Social Cognitive Networks in Patients with Mild Cognitive Impairment: Preliminary Results. Diagnostics (Basel) 2023; 13:415. [PMID: 36766520 PMCID: PMC9914912 DOI: 10.3390/diagnostics13030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Patients with mild cognitive impairment (MCI) often present impairment in executive functions (EFs). This study aimed to investigate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on EFs in patients with MCI. (2) Methods: A prospective trial was conducted on 11 patients with MCI. Participants underwent 25 min of 20 Hz rTMS for ten days on the right temporo-parietal junction (RTPJ) and medial prefrontal cortex (MPFC). Before (T0) and after rTMS treatment (T1), global cognitive profile and EFs were investigated using the Montreal cognitive assessment (MoCA), trial making test (TMT) A and B, and frontal assessment battery (FAB). Depression symptoms were assessed using the geriatric depression scale (GDS). Statistical analysis included Wilcoxon signed-rank test. (3) Results: After treatment, patients showed a significant improvement in the MoCA EFs subtask (T0 vs. T1, p = 0.015) and TMT-B (T0 vs. T1, p = 0.028). Five MCI patients with EF impairment showed full recovery of these deficits. No significant changes in the GDS were observed. (4) Conclusions: rTMS stimulation over the TPJ and MPFC induced significant short-term improvements in EFs in MCI patients. These findings suggest that the TPJ and MPFC may be involved in the attention-executive skills to redirect attention toward behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Leonardo Sacco
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Martino Ceroni
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Deborah Pacifico
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Giorgia Zerboni
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Stefania Rossi
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Serena Caverzasio
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Gianna C. Riccitelli
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
3
|
Middag‐van Spanje M, Duecker F, Gallotto S, de Graaf TA, van Heugten C, Sack AT, Schuhmann T. Transcranial magnetic stimulation over posterior parietal cortex modulates alerting and executive control processes in attention. Eur J Neurosci 2022; 56:5853-5868. [PMID: 36161393 PMCID: PMC9828423 DOI: 10.1111/ejn.15830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Attention includes three different functional components: generating and maintaining an alert state (alerting), orienting to sensory events (orienting), and resolving conflicts between alternative actions (executive control). Neuroimaging and patient studies suggest that the posterior parietal cortex (PPC) is involved in all three attention components. Transcranial magnetic stimulation (TMS) has repeatedly been applied over the PPC to study its functional role for shifts and maintenance of visuospatial attention. Most TMS-PPC studies used only detection tasks or orienting paradigms to investigate TMS-PPC effects on attention processes, neglecting the alerting and executive control components of attention. The objective of the present study was to investigate the role of PPC in all three functional components of attention: alerting, orienting, and executive control. To this end, we disrupted PPC with TMS (continuous theta-burst stimulation), to modulate subsequent performance on the Lateralized-Attention Network Test, used to assess the three attention components separately. Our results revealed hemifield-specific effects on alerting and executive control functions, but we did not find stimulation effects on orienting performance. While this field of research and associated clinical development have been predominantly focused on orienting performance, our results suggest that parietal cortex and its modulation may affect other aspects of attention as well.
Collapse
Affiliation(s)
- Marij Middag‐van Spanje
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,InteraktContourNunspeetThe Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands
| | - Stefano Gallotto
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Tom A. de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands
| | - Caroline van Heugten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve CentreMaastricht University Medical Centre+MaastrichtThe Netherlands,Limburg Brain Injury CenterMaastrichtThe Netherlands
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve CentreMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands
| |
Collapse
|
4
|
Concurrent frontal and parietal network TMS for modulating attention. iScience 2022; 25:103962. [PMID: 35295814 PMCID: PMC8919227 DOI: 10.1016/j.isci.2022.103962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/17/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been applied to frontal eye field (FEF) and intraparietal sulcus (IPS) in isolation, to study their role in attention. However, these nodes closely interact in a "dorsal attention network". Here, we compared effects of inhibitory TMS applied to individually fMRI-localized FEF or IPS (single-node TMS), to effects of simultaneously inhibiting both regions ("network TMS"), and sham. We assessed attention performance using the lateralized attention network test, which captures multiple facets of attention: spatial orienting, alerting, and executive control. TMS showed no effects on alerting and executive control. For spatial orienting, only network TMS showed a reduction of the orienting effect in the right hemifield compared to the left hemifield, irrespective of the order of TMS application (IPS→FEF or FEF→IPS). Network TMS might prevent compensatory mechanisms within a brain network, which is promising for both research and clinical applications to achieve superior neuromodulation effects.
Collapse
|
5
|
Whybird M, Coats R, Vuister T, Harrison S, Booth S, Burke M. The role of the posterior parietal cortex on cognition: An exploratory study. Brain Res 2021; 1764:147452. [PMID: 33838128 DOI: 10.1016/j.brainres.2021.147452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) that can be used to increase (intermittent TBS) or reduce (continuous TBS) cortical excitability. The current study provides a preliminary report of the effects of iTBS and cTBS in healthy young adults, to investigate the causal role of the posterior parietal cortex (PPC) during the performance of four cognitive functions: attention, inhibition, sequence learning and working memory. A 2 × 2 repeated measures design was incorporated using hemisphere (left/right) and TBS type (iTBS/cTBS) as the independent variables. 20 participants performed the cognitive tasks both before and after TBS stimulation in 4 counterbalanced experimental sessions (left cTBS, right cTBS, left iTBS and right iTBS) spaced 1 week apart. No change in performance was identified for the attentional cueing task after TBS stimulation, however TBS applied to the left PPC decreased reaction time when inhibiting a reflexive response. The sequence learning task revealed differential effects for encoding of the sequence versus the learnt items. cTBS on the right hemisphere resulted in faster responses to learnt sequences, and iTBS on the right hemisphere reduced reaction times during the initial encoding of the sequence. The reaction times in the 2-back working memory task were increased when TBS stimulation was applied to the right hemisphere. Results reveal clear differential effects for tasks explored, and more specifically where TBS stimulation on right PPC could provide a potential for further investigation into improving oculomotor learning by inducing plasticity-like mechanisms in the brain.
Collapse
Affiliation(s)
- Marlee Whybird
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachel Coats
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Tessa Vuister
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Harrison
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Samantha Booth
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Melanie Burke
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Additional Effects of Xbox Kinect Training on Upper Limb Function in Chronic Stroke Patients: A Randomized Control Trial. Healthcare (Basel) 2021; 9:healthcare9030242. [PMID: 33668355 PMCID: PMC7996301 DOI: 10.3390/healthcare9030242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Xbox Kinect-based virtual reality, being a novel approach, has therapeutic benefits in rehabilitation and its use is encouraged in stroke rehabilitation of upper extremities. Objective: Primary aim of the current study is to investigate the additional effects of Xbox Kinect training in combination with routine physiotherapy exercises based on each component of Fugl-Meyer Assessment Scale for Upper Extremity (FMA-UE). Moreover, effect of upper limb rehabilitation on cognitive functions was also assessed. Methods: This study was a parallel arm randomized control trial. Fifty-six participants were recruited and randomly allocated to either an Xbox Kinect training group (XKGT) or exercise training group (ETG). Measures of concern were recorded using FMA-UE, Box and Block Test (BBT), and Montreal Cognitive Assessment (MOCA). Evaluation was conducted at baseline and after completion of intervention at the sixth week. Results: There were significant differences from pre- to post-intervention scores of FMA-UE and BBT (p < 0.001) in both groups, whereas no difference was observed for MOCA (XKTG p value 0.417, ETG p value 0.113). At six-week follow-up there were significant differences between both groups in FMA-UE total score (p < 0.001), volitional movement within synergies (p < 0.001), wrist (p = 0.021), hand (p = 0.047), grasp (p = 0.006) and coordination/speed (p = 0.004), favoring the Xbox Kinect training group. Conclusion: To conclude, results indicate repetitive use of the hemiparetic upper extremity by Xbox Kinect-based upper limb rehabilitation training in addition to conventional therapy has a promising potential to enhance upper limb motor function for stroke patients.
Collapse
|
7
|
Yeager B, Dougher C, Cook R, Medaglia J. The role of transcranial magnetic stimulation in understanding attention-related networks in single subjects. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100017. [PMID: 36246510 PMCID: PMC9559099 DOI: 10.1016/j.crneur.2021.100017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Attention is a cognitive mechanism that has been studied through several methodological viewpoints, including animal models, MRI in stroke patients, and fMRI in healthy subjects. Activation-based fMRI research has also pointed to specific networks that activate during attention tasks. Most recently, network neuroscience has been used to study the functional connectivity of large-scale networks for attention to reveal how strongly correlated networks are to each other when engaged in specific behaviors. While neuroimaging has revealed important information about the neural correlates of attention, it is crucial to better understand how these processes are organized and executed in the brain in single subjects to guide theories and treatments for attention. Noninvasive brain stimulation is an effective tool to causally manipulate neural activity to detect the causal roles of circuits in behavior. We describe how combining transcranial magnetic stimulation (TMS) with modern precision network analysis in single-subject neuroimaging could test the roles of regions, circuits, and networks in regulating attention as a pathway to improve treatment effect magnitudes and specificity. Though studied for over 100 years, the brain basis of attention is still queried. Complexity in frameworks for attention makes brain mapping difficult. Relevant brain networks vary significantly across subjects, challenging progress. Single-subject neuroimaging with TMS can improve our understanding of attention.
Collapse
Affiliation(s)
- B.E. Yeager
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
- Corresponding author.
| | - C.C. Dougher
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
| | - R.H. Cook
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
| | - J.D. Medaglia
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
- Department of Neurology, Drexel University College of Medicine, 245 N. 15th Street, Mail Stop 423, New College Building, Suite 7102, Philadelphia, PA, 19102, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
9
|
Elkin-Frankston S, Rushmore RJ, Valero-Cabré A. Low frequency transcranial magnetic stimulation of right posterior parietal cortex reduces reaction time to perithreshold low spatial frequency visual stimuli. Sci Rep 2020; 10:3162. [PMID: 32081939 PMCID: PMC7035391 DOI: 10.1038/s41598-020-59662-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022] Open
Abstract
Research in humans and animal models suggests that visual responses in early visual cortical areas may be modulated by top-down influences from distant cortical areas, particularly in the frontal and parietal regions. The right posterior parietal cortex is part of a broad cortical network involved in aspects of visual search and attention, but its role in modulating activity in early visual cortical areas is less well understood. This study evaluated the influence of right posterior parietal cortex (PPC) on a direct measure of visual processing in humans. Contrast sensitivity (CS) and detection response times were recorded using a visual detection paradigm to two types of centrally-presented stimuli. Participants were tested on the detection task before, after, and 1 hour after low-frequency repetitive transcranial magnetic stimulation (rTMS) to the right PPC or to the scalp vertex. Low-frequency rTMS to the right PPC did not significantly change measures of contrast sensitivity, but increased the speed at which participants responded to visual stimuli of low spatial frequency. Response times returned to baseline 1-hour after rTMS. These data indicate that low frequency rTMS to the right PPC speeds up aspects of early visual processing, likely due to a disinhibition of the homotopic left posterior parietal cortex.
Collapse
Affiliation(s)
- Seth Elkin-Frankston
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.,U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Richard J Rushmore
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, United States. .,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States.
| | - Antoni Valero-Cabré
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Cerebral Dynamics Plasticity and Rehabilitation Group, FRONTLAB Team ICM & CNRS UMR 7225, INSERM UMR 1127, Sorbone Universtité & LPNC CNRS UMR 5105-TREAT vision, Service de Neurologie, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
10
|
Wu C, Li MN, Feng YW, He XF, Li WQ, Liang FY, Li X, Li G, Pei Z, Lan Y, Xu GQ. Continuous theta burst stimulation provides neuroprotection by accelerating local cerebral blood flow and inhibiting inflammation in a mouse model of acute ischemic stroke. Brain Res 2020; 1726:146488. [PMID: 31586625 DOI: 10.1016/j.brainres.2019.146488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023]
Abstract
Acute ischemic stroke is a leading cause of disability with limited therapeutic options. Continuous theta burst stimulation (cTBS) has recently been shown to be a promising noninvasive therapeutic strategy for neuroprotection in ischemic stroke patients. Here, we investigated the protective effects of cTBS following acute infarction using a photothrombotic stroke (PTS) model in the right posterior parietal cortex (PPC) of C57BL/6 mice. Treatment with cTBS resulted in a reduction in the volume of the infarct region and significantly increased vascular diameter and blood flow velocity in peri-infarct region, as well as decreased the numbers of calcium binding adapter molecule 1 (Iba-1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes. Moreover, the number of CD16/32 positive microglia was decreased, whereas the number of CD206 positive microglia was increased. In addition, performance in a water maze task was significantly improved. These results indicated that cTBS protected against PPC infarct region, leading to an improvement in spatial cognitive function, possibly as a result of changes to cerebral microvascular function and inflammatory responses.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meng-Ni Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi-Wei Feng
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei He
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wan-Qi Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feng-Yin Liang
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhong Pei
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China; Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
11
|
Chen L, Mao Y, Ding M, Li L, Leng Y, Zhao J, Xu Z, Huang DF, Lo WLA. Assessing the Relationship Between Motor Anticipation and Cortical Excitability in Subacute Stroke Patients With Movement-Related Potentials. Front Neurol 2018; 9:881. [PMID: 30386292 PMCID: PMC6199379 DOI: 10.3389/fneur.2018.00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/28/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Stroke survivors may lack the cognitive ability to anticipate the required control for palmar grasp execution. The cortical mechanisms involved in motor anticipation of palmar grasp movement and its association with post-stroke hand function remains unknown. Aims: To investigate the cognitive anticipation process during a palmar grasp task in subacute stroke survivors and to compare with healthy individuals. The association between cortical excitability and hand function was also explored. Methods: Twenty-five participants with hemiparesis within 1-6 months after first unilateral stroke were recruited. Twenty-five matched healthy individuals were recruited as control. Contingent negative variation (CNV) was measured using electroencephalography recordings (EEG). Event related potentials were elicited by cue triggered hand movement paradigm. CNV onset time and amplitude between pre-cue and before movement execution were recorded. Results: The differences in CNV onset time and peak amplitude were statistically significant between the subacute stroke and control groups, with patients showing earlier onset time with increased amplitudes. However, there was no statistically significant difference in CNV onset time and peak amplitude between lesioned and non-lesioned hemisphere in the subacute stroke group. Low to moderate linear associations were observed between cortical excitability and hand function. Conclusions: The earlier CNV onset time and higher peak amplitude observed in the subacute stroke group suggest increased brain computational demand during palmar grasp task. The lack of difference in CNV amplitude between the lesioned and non-lesioned hemisphere within the subacute stroke group may suggest that the non-lesioned hemisphere plays a role in the motor anticipatory process. The moderate correlations suggested that hand function may be associated with cortical processing of motor anticipation.
Collapse
Affiliation(s)
- Ling Chen
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Acupuncture and Moxibustion, The Secondary Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yurong Mao
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Feng Huang
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Repetitive transcranial magnetic stimulation of the right parietal cortex for comorbid generalized anxiety disorder and insomnia: A randomized, double-blind, sham-controlled pilot study. Brain Stimul 2018; 11:1103-1109. [DOI: 10.1016/j.brs.2018.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 01/04/2023] Open
|
13
|
Virtual Reality for Upper Limb Rehabilitation in Subacute and Chronic Stroke: A Randomized Controlled Trial. Arch Phys Med Rehabil 2018; 99:834-842.e4. [PMID: 29453980 DOI: 10.1016/j.apmr.2018.01.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of reinforced feedback in virtual environment (RFVE) treatment combined with conventional rehabilitation (CR) in comparison with CR alone, and to study whether changes are related to stroke etiology (ie, ischemic, hemorrhagic). DESIGN Randomized controlled trial. SETTING Hospital facility for intensive rehabilitation. PARTICIPANTS Patients (N=136) within 1 year from onset of a single stroke (ischemic: n=78, hemorrhagic: n=58). INTERVENTIONS The experimental treatment was based on the combination of RFVE with CR, whereas control treatment was based on the same amount of CR. Both treatments lasted 2 hours daily, 5d/wk, for 4 weeks. MAIN OUTCOME MEASURES Fugl-Meyer upper extremity scale (F-M UE) (primary outcome), FIM, National Institutes of Health Stroke Scale (NIHSS), and Edmonton Symptom Assessment Scale (ESAS) (secondary outcomes). Kinematic parameters of requested movements included duration (time), mean linear velocity (speed), and number of submovements (peak) (secondary outcomes). RESULTS Patients were randomized in 2 groups (RFVE with CR: n=68, CR: n=68) and stratified by stroke etiology (ischemic or hemorrhagic). Both groups improved after treatment, but the experimental group had better results than the control group (Mann-Whitney U test) for F-M UE (P<.001), FIM (P<.001), NIHSS (P≤.014), ESAS (P≤.022), time (P<.001), speed (P<.001), and peak (P<.001). Stroke etiology did not have significant effects on patient outcomes. CONCLUSIONS The RFVE therapy combined with CR treatment promotes better outcomes for upper limb than the same amount of CR, regardless of stroke etiology.
Collapse
|
14
|
Alterations of the amplitude of low-frequency fluctuation in healthy subjects with theta-burst stimulation of the cortex of the suprahyoid muscles. Neuroscience 2017; 365:48-56. [PMID: 28947393 DOI: 10.1016/j.neuroscience.2017.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
Theta burst stimulation (TBS) has emerged as a promising tool for the treatment of swallowing disorders; however, the short-term after-effects of brain activation induced by TBS remain unknown. Here, we measured the changes in spontaneous brain activation using the amplitude of low-frequency fluctuation (ALFF) approach in subjects who underwent different TBS protocols. Sixty right-handed healthy participants (male, n=30; female, n=30; mean age=23.5y) were recruited in this study and randomly assigned to three groups that underwent three different TBS protocols. In group 1, continuous TBS (cTBS) was positioned on the left hemisphere of the suprahyoid muscle cortex. For group 2, intermittent TBS (iTBS) was placed on the left hemisphere of the suprahyoid muscle cortex. Group 3 underwent combined cTBS/iTBS protocols in which iTBS on the right hemisphere was performed immediately after completing cTBS on the left suprahyoid muscle cortex. Compared to pre-TBS, post-cTBS showed decreased ALFF in the anterior cingulate gyrus (BA 32); post-iTBS induced an increase in ALFF in the bilateral precuneus (BA 7); and post-cTBS/iTBS induced a decrease in ALFF in the brainstem, and resulted in increased ALFF in the middle cingulate gyrus (BA 24) as well as the left precentral gyrus (BA 6). Compared the effect of post-TBS protocols, increased ALFF was found in left posterior cerebellum lobe and left inferior parietal lobule (BA 40) (post-cTBS vs post-iTBS), and decreased ALFF exhibited in paracentral lobule (BA 4) (post-iTBS vs post-cTBS/iTBS). These findings indicate that multiple brain areas involved in swallowing regulation after stimulation of TBS over the suprahyoid muscles. cTBS induces decreased after-effects while iTBS results in increased after-effects on spontaneous brain activation. Moreover, iTBS can eliminate the after-effects of cTBS applied on the contralateral swallowing cortex and alter the activity of contralateral motor cortex and brainstem. Our findings provide a novel evidence for the short-term effect of TBS on spontaneous brain activation.
Collapse
|
15
|
Duecker F, Schuhmann T, Bien N, Jacobs C, Sack AT. Moving Beyond Attentional Biases: Shifting the Interhemispheric Balance between Left and Right Posterior Parietal Cortex Modulates Attentional Control Processes. J Cogn Neurosci 2017; 29:1267-1278. [DOI: 10.1162/jocn_a_01119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The concept of interhemispheric competition has been very influential in attention research, and the occurrence of biased attention due to an imbalance in posterior parietal cortex (PPC) is well documented. In this context, the vast majority of studies have assessed attentional performance with tasks that did not include an explicit experimental manipulation of attention, and, as a consequence, it remains largely unknown how these findings relate to core attentional constructs such as endogenous and exogenous control and spatial orienting and reorienting. We here addressed this open question by creating an imbalance between left and right PPC with transcranial direct current stimulation, resulting in right-hemispheric dominance, and assessed performance on three experimental paradigms that isolate distinct attentional processes. The comparison between active and sham transcranial direct current stimulations revealed a highly informative pattern of results with differential effects across tasks. Our results demonstrate the functional necessity of PPC for endogenous and exogenous attentional control and, importantly, link the concept of interhemispheric competition to core attentional processes, thus moving beyond the notion of biased attention after noninvasive brain stimulation over PPC.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Attention is a primary cognitive function critical for perception, language, and memory. We provide an update on brain networks related to attention, their development, training, and pathologies. RECENT FINDINGS An executive attention network, also called the cingulo-opercular network, allows voluntary control of behavior in accordance with goals. Individual differences among children in self-regulation have been measured by a higher order factor called effortful control, which is related to the executive network and to the size of the anterior cingulate cortex. SUMMARY Brain networks of attention arise in infancy and are related to individual differences, including pathology during childhood. Methods of training attention may improve performance and ameliorate pathology.
Collapse
|