1
|
Malik J, Główka N, Jelonek W, Maciaszek J. The effect of juggling on the proprioceptive and attentional abilities among older women. Front Public Health 2024; 12:1386981. [PMID: 39416927 PMCID: PMC11479956 DOI: 10.3389/fpubh.2024.1386981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Age-related changes in attentional abilities can lead to a decline in body segment awareness in space. However, studies have reported that physical activity can improve proprioception among older adults, although proven activities with this potential are limited. Juggling is a promising activity for enhancing proprioception, as it requires high levels of attention and sensory precision. The first hypothesis posited that a juggling intervention would positively impact ipsilateral and contralateral elbow joint position matching without visual input. The second hypothesis suggested a correlation between cognitive abilities and joint position sense efficiency. Methods A total of 20 older women (mean age: 69.95 ± 4.58) participated in a repeated-measures study using a Latin square design. Measurements were taken at three time points (baseline, post-juggling, and control). Ipsilateral and contralateral elbow joint position matchings without visual or verbal feedback of accuracy were used to assess proprioception. Attention and reaction time variables were measured using the Vienna Test System protocols. Results Although significant changes were observed between baseline and subsequent time points in joint position sense accuracy, no specific effect of juggling was detected. Low and medium correlations were found between decision time and the variability of choice reaction time with contralateral accuracy. For ipsilateral accuracy, a relationship was observed only with handedness. No correlations were found between attention test scores and joint position sense accuracy. Conclusion The study did not demonstrate a significant effect of juggling on position-matching ability. However, cognitive abilities such as decision speed and the stability of choice reaction time may play a role in enhancing position-matching in older women. Clinical trial registration ClinicalTrials.gov, identifier NCT06108713.
Collapse
Affiliation(s)
- Jakub Malik
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, Poznan, Poland
| | - Natalia Główka
- Department of Sports Dietetics, Poznan University of Physical Education, Poznan, Poland
| | - Wojciech Jelonek
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Poznan, Poland
| | - Janusz Maciaszek
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
2
|
Jurkiewicz T, Delporte L, Revol P, Rossetti Y, Pisella L. Effect of juggling expertise on pointing performance in peripheral vision. PLoS One 2024; 19:e0306630. [PMID: 38995902 PMCID: PMC11244809 DOI: 10.1371/journal.pone.0306630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Juggling is a very complex activity requiring motor, visual and coordination skills. Expert jugglers experience a "third eye" monitoring leftward and rightward ball zenith positions alternately, in the upper visual fields, while maintaining their gaze straight-ahead. This "third eye" reduces their motor noise (improved body stability and decrease in hand movement variability) as it avoids the numerous head and eye movements that add noise into the system and make trajectories more uncertain. Neuroimaging studies have shown that learning to juggle induces white and grey matter hypertrophy at the posterior intraparietal sulcus. Damage to this brain region leads to optic ataxia, a clinical condition characterised by peripheral pointing bias toward gaze position. We predicted that expert jugglers would, conversely, present better accuracy in a peripheral pointing task. The mean pointing accuracy of expert jugglers was better for peripheral pointing within the upper visual field, compatible with their subjective experience of the "third eye". Further analyses showed that experts exhibited much less between-subject variability than beginners, reinforcing the interpretation of a vertically asymmetrical calibration of peripheral space, characteristic of juggling and homogenous in the expert group. On the contrary, individual pointing variability did not differ between groups neither globally nor in any sector of space, showing that the reduced motor noise of experts in juggling did not transfer to pointing. It is concluded that the plasticity of the posterior intraparietal sulcus related to juggling expertise does not consist of globally improved visual-to-motor ability. It rather consists of peripheral space calibration by practicing horizontal covert shifts of the attentional spotlight within the upper visual field, between left and right ball zenith positions.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Centre d’Exploration de la Rétine Kléber, Ophthalmology Department, Lyon, France
| | - Ludovic Delporte
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Patrice Revol
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
| |
Collapse
|
3
|
He X, Bao M. Neuroimaging evidence of visual-vestibular interaction accounting for perceptual mislocalization induced by head rotation. NEUROPHOTONICS 2024; 11:015005. [PMID: 38298609 PMCID: PMC10828893 DOI: 10.1117/1.nph.11.1.015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Significance A fleeting flash aligned vertically with an object remaining stationary in the head-centered space would be perceived as lagging behind the object during the observer's horizontal head rotation. This perceptual mislocalization is an illusion named head-rotation-induced flash-lag effect (hFLE). While many studies have investigated the neural mechanism of the classical visual FLE, the hFLE has been hardly investigated. Aim We measured the cortical activity corresponding to the hFLE on participants experiencing passive head rotations using functional near-infrared spectroscopy. Approach Participants were asked to judge the relative position of a flash to a fixed reference while being horizontally rotated or staying static in a swivel chair. Meanwhile, functional near-infrared spectroscopy signals were recorded in temporal-parietal areas. The flash duration was manipulated to provide control conditions. Results Brain activity specific to the hFLE was found around the right middle/inferior temporal gyri, and bilateral supramarginal gyri and superior temporal gyri areas. The activation was positively correlated with the rotation velocity of the participant around the supramarginal gyrus and negatively related to the hFLE intensity around the middle temporal gyrus. Conclusions These results suggest that the mechanism underlying the hFLE involves multiple aspects of visual-vestibular interactions including the processing of multisensory conflicts mediated by the temporoparietal junction and the modulation of vestibular signals on object position perception in the human middle temporal complex.
Collapse
Affiliation(s)
- Xin He
- Chinese Academy of Sciences, Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, China
| | - Min Bao
- Chinese Academy of Sciences, Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
4
|
Carius D, Herold F, Clauß M, Kaminski E, Wagemann F, Sterl C, Ragert P. Increased Cortical Activity in Novices Compared to Experts During Table Tennis: A Whole-Brain fNIRS Study Using Threshold-Free Cluster Enhancement Analysis. Brain Topogr 2023; 36:500-516. [PMID: 37119404 PMCID: PMC10293405 DOI: 10.1007/s10548-023-00963-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/15/2023] [Indexed: 05/01/2023]
Abstract
There is a growing interest to understand the neural underpinnings of high-level sports performance including expertise-related differences in sport-specific skills. Here, we aimed to investigate whether expertise level and task complexity modulate the cortical hemodynamics of table tennis players. 35 right-handed table tennis players (17 experts/18 novices) were recruited and performed two table tennis strokes (forehand and backhand) and a randomized combination of them. Cortical hemodynamics, as a proxy for cortical activity, were recorded using functional near-infrared spectroscopy, and the behavioral performance (i.e., target accuracy) was assessed via video recordings. Expertise- and task-related differences in cortical hemodynamics were analyzed using nonparametric threshold-free cluster enhancement. In all conditions, table tennis experts showed a higher target accuracy than novices. Furthermore, we observed expertise-related differences in widespread clusters compromising brain areas being associated with sensorimotor and multisensory integration. Novices exhibited, in general, higher activation in those areas as compared to experts. We also identified task-related differences in cortical activity including frontal, sensorimotor, and multisensory brain areas. The present findings provide empirical support for the neural efficiency hypothesis since table tennis experts as compared to novices utilized a lower amount of cortical resources to achieve superior behavioral performance. Furthermore, our findings suggest that the task complexity of different table tennis strokes is mirrored in distinct cortical activation patterns. Whether the latter findings can be useful to monitor or tailor sport-specific training interventions necessitates further investigations.
Collapse
Affiliation(s)
- Daniel Carius
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany.
| | - Fabian Herold
- Faculty of Health Sciences, University of Potsdam, 14476, Potsdam, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Florian Wagemann
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Clemens Sterl
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Malik J, Maciaszek J. Effect of the Juggling-Based Motor Learning Physical Activity on Well-Being in Elderly: A Pre-Post Study with a Special Training Protocol. Healthcare (Basel) 2022; 10:healthcare10122442. [PMID: 36553966 PMCID: PMC9778107 DOI: 10.3390/healthcare10122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The importance of physical activity for the elderly is undeniable. Specific forms of exercise that are able to engage practitioners, both cognitively and physically, may provide more positive consequences for health and quality of life. Juggling is one of these activities that has both of these characteristics. Methods: Twenty elderly people (70.55 ± 4.91) were included in a juggling-based motor learning protocol for twelve training units during one month of exercising. An evaluation of the proposed exercises (five-point Likert scale) and a subjective assessment of well-being (WHO-5) were conducted during the protocol. Results: All participants learned to perform a three-ball flash cascade. Exercises were rated as very attractive (4.85 ± 0.31) by the practitioners, and a statistically significant improvement in well-being in participants was shown (p < 0.01; d = 0.76). Additionally, in the participating group, the number of people at risk of depression decreased significantly after the intervention with juggling classes (p < 0.01; g = 0.5). Conclusions: The proposed protocol could be an interesting physical activity for the elderly. It can be assumed that this activity, especially when performed in a group form, can improve the well-being of participants in a short period of time.
Collapse
|
6
|
Malik J, Stemplewski R, Maciaszek J. The Effect of Juggling as Dual-Task Activity on Human Neuroplasticity: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7102. [PMID: 35742356 PMCID: PMC9222273 DOI: 10.3390/ijerph19127102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022]
Abstract
This systematic review formulated a research question based on the PICO method in accordance with the Guidelines for Systematic Reviews and Meta-Analyses (PRISMA), "What is the effect of juggling as dual-task activity on neuroplasticity in the human brain?" In total, 1982 studies were analysed, 11 of which met the inclusion criteria and were included in the review. These studies included 400 participants who had no prior juggling experience or were expert jugglers. The research methodology in seven studies was based on a long-term intervention with juggling. Three studies were based on brain imaging during the act of juggling, and one study was based on comparing differences between experienced jugglers and non-jugglers without the intervention. In all of these selected studies, positive structural changes in the human brain were found, including changes mainly in the gray matter (GM) volume in the visual motion complex area (hMT/V5) and the white matter (WM) volume in fractional anisotropy (FA). Based on this evidence, it can be concluded that the bimanual juggling task, as a dual-task activity, may effectively integrate brain areas to improve neuroplasticity. The small number of well-designed studies and the high risk of bias call for further research using a juggling intervention to identify conclusive evidence.
Collapse
Affiliation(s)
- Jakub Malik
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland;
| | - Rafał Stemplewski
- Department of Digital Technologies in Physical Activity, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland;
| | - Janusz Maciaszek
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland;
| |
Collapse
|
7
|
Perrey S. Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports (Basel) 2022; 10:56. [PMID: 35447866 PMCID: PMC9028378 DOI: 10.3390/sports10040056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Appropriate training burden monitoring is still a challenge for the support staff, athletes, and coaches. Extensive research has been done in recent years that proposes several external and internal indicators. Among all measurements, the importance of cognitive factors has been indicated but has never been really considered in the training monitoring process. While there is strong evidence supporting the use of cognitive demand indicators in cognitive neuroscience, their importance in training monitoring for multiple sports settings must be better emphasized. The aims of this scoping review are to (1) provide an overview of the cognitive demand concept beside the physical demand in training; (2) highlight the current methods for assessing cognitive demand in an applied setting to sports in part through a neuroergonomics approach; (3) show how cognitive demand metrics can be exploited and applied to our better understanding of fatigue, sport injury, overtraining and individual performance capabilities. This review highlights also the potential new ways of brain imaging approaches for monitoring in situ. While assessment of cognitive demand is still in its infancy in sport, it may represent a very fruitful approach if applied with rigorous protocols and deep knowledge of both the neurobehavioral and cognitive aspects. It is time now to consider the cognitive demand to avoid underestimating the total training burden and its management.
Collapse
Affiliation(s)
- Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, 34090 Montpellier, France
| |
Collapse
|
8
|
Zhang F, Cheong D, Khan AF, Chen Y, Ding L, Yuan H. Correcting physiological noise in whole-head functional near-infrared spectroscopy. J Neurosci Methods 2021; 360:109262. [PMID: 34146592 DOI: 10.1016/j.jneumeth.2021.109262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) has been increasingly employed to monitor cerebral hemodynamics in normal and diseased conditions. However, fNIRS suffers from its susceptibility to superficial activity and systemic physiological noise. The objective of the study was to establish a noise reduction method for fNIRS in a whole-head montage. NEW METHOD We have developed an automated denoising method for whole-head fNIRS. A high-density montage consisting of 109 long-separation channels and 8 short-separation channels was used for recording. Auxiliary sensors were also used to measure motion, respiration and pulse simultaneously. The method incorporates principal component analysis and general linear model to identify and remove a globally uniform superficial component. Our denoising method was evaluated in experimental data acquired from a group of healthy human subjects during a visually cued motor task and further compared with a minimal preprocessing method and three established denoising methods in the literature. Quantitative metrics including contrast-to-noise ratio, within-subject standard deviation and adjusted coefficient of determination were evaluated. RESULTS After denoising, whole-head topography of fNIRS revealed focal activations concurrently in the primary motor and visual areas. COMPARISON WITH EXISTING METHODS Analysis showed that our method improves upon the four established preprocessing methods in the literature. CONCLUSIONS An automatic, effective and robust preprocessing pipeline was established for removing physiological noise in whole-head fNIRS recordings. Our method can enable fNIRS as a reliable tool in monitoring large-scale, network-level brain activities for clinical uses.
Collapse
Affiliation(s)
- Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Daniel Cheong
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Ali F Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yuxuan Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
9
|
Schumacher N, Reer R, Braumann KM. On-Field Perceptual-Cognitive Training Improves Peripheral Reaction in Soccer: A Controlled Trial. Front Psychol 2020; 11:1948. [PMID: 32849142 PMCID: PMC7427441 DOI: 10.3389/fpsyg.2020.01948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Abilities such as peripheral reaction are of special importance in soccer. Whether these abilities can be improved by sport-specific on-field interventions remains unclear. The aim of the present controlled trial was to investigate the effect of a soccer-specific perceptual-cognitive on-field training on peripheral reaction of highly talented soccer players aged 12–13 years. N = 38 male elite athletes from young talent centers were allocated to an intervention (n = 19) and a control group (CG) (n = 19). Computer-based peripheral perception tests were conducted before and after intervention. Combining a sport-specific and a juggling task, the intervention was performed once a week (8 weeks, 20 min per week) in addition to team training. The CG exclusively underwent usual team training. Analyses show significant differences between the two groups for peripheral reaction time (PRT), with significant improvements for the intervention group and none for the CG. Furthermore, results indicate that improvements in peripheral reaction might be due to changes in the reaction time of right-footed players. Future studies should be conducted to clarify the effect of sport-specific on-field training approaches on PRT. These analyses should consider the influence of lateralization on effectivity of perceptual-cognitive on-field training approaches.
Collapse
Affiliation(s)
- Nils Schumacher
- Faculty of Psychology and Human Movement, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Rüdiger Reer
- Faculty of Psychology and Human Movement, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Klaus-Michael Braumann
- Faculty of Psychology and Human Movement, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|
11
|
Seidel-Marzi O, Ragert P. Neurodiagnostics in Sports: Investigating the Athlete's Brain to Augment Performance and Sport-Specific Skills. Front Hum Neurosci 2020; 14:133. [PMID: 32327988 PMCID: PMC7160821 DOI: 10.3389/fnhum.2020.00133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
12
|
Digit Force Controls and Corresponding Brain Activities in Finger Pressing Performance: A Comparison Between Older Adults and Young Individuals. J Aging Phys Act 2020; 28:94-103. [PMID: 31629354 DOI: 10.1123/japa.2018-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/18/2022]
Abstract
This study aims toward an investigation and comparison of the digital force control and the brain activities of older adults and young groups during digital pressing tasks. A total of 15 young and 15 older adults were asked to perform force ramp tasks at different force levels with a custom pressing system. Near-infrared spectroscopy was used to collect the brain activities in the prefrontal cortex and primary motor area. The results showed that the force independence and hand function of the older adults were worse than that of the young adults. The cortical activations in the older adults were higher than those in the young group during the tasks. A significant hemodynamic between-group response and mild negative correlations between brain activation and force independence ability were found. Older adults showed poor force independence ability and manual dexterity and required additional brain activity to compensate for the degeneration.
Collapse
|
13
|
Carius D, Hörnig L, Ragert P, Kaminski E. Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neurosci Lett 2019; 715:134604. [PMID: 31693932 DOI: 10.1016/j.neulet.2019.134604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
Bouldering is a special form of climbing without rope that requires coordinated whole-body movements. While physical performance parameters such as condition have been well studied, the knowledge on neural activity during climbing still remains sparse. Functional near-infrared spectroscopy (fNIRS) allows to measure brain activation while performing sportive actions due to its relative robustness against motion artefacts. In the current study, hemodynamic response alterations of 13 advanced climbers were investigated during boulder performance using fNIRS measurements. Simple and moderate climbing routes were compared regarding their level of cortical activation mainly in the sensorimotor area. Our results show that repetitively climbing a set of boulders activates almost all areas of the sensorimotor system including the bilateral premotor and supplementary motor cortex, bilateral primary motor cortex as well as the bilateral gyrus supramarginalis and somatosensory cortex. This result was found in both simple and moderate climbing routes with no effect of task complexity on the level of cortical activity. Correlation analysis (uncorrected for multiple comparisons) revealed a negative association between the level of expertise and the hemodynamic response in the supplementary-motor region, suggesting that gaining expertise in climbing is associated with a decrease in secondary motor areas, which is an indicator of motor automaticity. In summary, the present study provides first proof of concept that fNIRS is capable of assessing hemodynamic response alterations within the human motor system during the execution of complex whole-body climbing movements.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.
| | - Lisa Hörnig
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Kaminski
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
14
|
Herold F, Müller P, Gronwald T, Müller NG. Dose-Response Matters! - A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 2019; 10:2338. [PMID: 31736815 PMCID: PMC6839278 DOI: 10.3389/fpsyg.2019.02338] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
In general, it is well recognized that both acute physical exercises and regular physical training influence brain plasticity and cognitive functions positively. However, growing evidence shows that the same physical exercises induce very heterogeneous outcomes across individuals. In an attempt to better understand this interindividual heterogeneity in response to acute and regular physical exercising, most research, so far, has focused on non-modifiable factors such as sex and different genotypes, while relatively little attention has been paid to exercise prescription as a modifiable factor. With an adapted exercise prescription, dosage can be made comparable across individuals, a procedure that is necessary to better understand the dose-response relationship in exercise-cognition research. This improved understanding of dose-response relationships could help to design more efficient physical training approaches against, for instance, cognitive decline.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Patrick Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Gronwald
- Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
15
|
Seidel O, Carius D, Roediger J, Rumpf S, Ragert P. Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls. Exp Brain Res 2019; 237:2957-2972. [PMID: 31506708 PMCID: PMC6794243 DOI: 10.1007/s00221-019-05646-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023]
Abstract
It is well known that endurance exercise modulates the cardiovascular, pulmonary, and musculoskeletal system. However, knowledge about its effects on brain function and structure is rather sparse. Hence, the present study aimed to investigate exercise-dependent adaptations in neurovascular coupling to different intensity levels in motor-related brain regions. Moreover, expertise effects between trained endurance athletes (EA) and active control participants (ACP) during a cycling test were investigated using multi-distance functional near-infrared spectroscopy (fNIRS). Initially, participants performed an incremental cycling test (ICT) to assess peak values of power output (PPO) and cardiorespiratory parameters such as oxygen consumption volume (VO2max) and heart rate (HRmax). In a second session, participants cycled individual intensity levels of 20, 40, and 60% of PPO while measuring cardiorespiratory responses and neurovascular coupling. Our results revealed exercise-induced decreases of deoxygenated hemoglobin (HHb), indicating an increased activation in motor-related brain areas such as primary motor cortex (M1) and premotor cortex (PMC). However, we could not find any differential effects in brain activation between EA and ACP. Future studies should extend this approach using whole-brain configurations and systemic physiological augmented fNIRS measurements, which seems to be of pivotal interest in studies aiming to assess neural activation in a sports-related context.
Collapse
Affiliation(s)
- Oliver Seidel
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany.
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Julia Roediger
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Sebastian Rumpf
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Perry S, Bridges SM, Zhu F, Leung WK, Burrow MF, Poolton J, Masters RS. Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation. J Med Internet Res 2017; 19:e371. [PMID: 29233801 PMCID: PMC5743913 DOI: 10.2196/jmir.8046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022] Open
Abstract
Background There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. Objective The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. Methods We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students’ propensity to reinvest. Results Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). Conclusions This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory.
Collapse
Affiliation(s)
- Suzanne Perry
- Faculty of Education, The University of Hong Kong, Hong Kong SAR, China
| | - Susan M Bridges
- Faculty of Education, The University of Hong Kong, Hong Kong SAR, China.,Centre for the Enhancement of Teaching and Learning, The University of Hong Kong, Hong Kong SAR, China
| | - Frank Zhu
- Faculty of Education, The University of Hong Kong, Hong Kong SAR, China.,Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - W Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael F Burrow
- Melbourne Dental School, The University of Melbourne, Melbourne, Australia
| | - Jamie Poolton
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rich Sw Masters
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Te Huataki Waiora Faculty of Health, Sport and Human Performance, The University of Waikato, Hamilton, New Zealand
| |
Collapse
|
17
|
Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L. Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. NEUROPHOTONICS 2017; 4:041403. [PMID: 28924563 PMCID: PMC5538329 DOI: 10.1117/1.nph.4.4.041403] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/23/2017] [Indexed: 05/07/2023]
Abstract
Safe locomotion is a crucial aspect of human daily living that requires well-functioning motor control processes. The human neuromotor control of daily activities such as walking relies on the complex interaction of subcortical and cortical areas. Technical developments in neuroimaging systems allow the quantification of cortical activation during the execution of motor tasks. Functional near-infrared spectroscopy (fNIRS) seems to be a promising tool to monitor motor control processes in cortical areas in freely moving subjects. However, so far, there is no established standardized protocol regarding the application and data processing of fNIRS signals that limits the comparability among studies. Hence, this systematic review aimed to summarize the current knowledge about application and data processing in fNIRS studies dealing with walking or postural tasks. Fifty-six articles of an initial yield of 1420 publications were reviewed and information about methodology, data processing, and findings were extracted. Based on our results, we outline the recommendations with respect to the design and data processing of fNIRS studies. Future perspectives of measuring fNIRS signals in movement science are discussed.
Collapse
Affiliation(s)
- Fabian Herold
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
- Address all correspondence to: Fabian Herold, E-mail:
| | - Patrick Wiegel
- University of Freiburg, Department of Sport Science, Freiburg, Germany
| | - Felix Scholkmann
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Angelina Thiers
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| | - Dennis Hamacher
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| | - Lutz Schega
- Otto von Guericke University Magdeburg, Institute III, Department of Sport Science, Magdeburg, Germany
| |
Collapse
|
18
|
Kim HY, Seo K, Jeon HJ, Lee U, Lee H. Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models. Mol Cells 2017; 40:523-532. [PMID: 28835022 PMCID: PMC5582298 DOI: 10.14348/molcells.2017.0153] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/26/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.
Collapse
Affiliation(s)
- Hak Yeong Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Kain Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul 06351,
Korea
| | - Unjoo Lee
- Department of Electronic Engineering, Hallym University, Kangwon 24252,
Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|