1
|
Li Y, Liu L, Pan Y, Fang F, Xie T, Cheng N, Guo C, Xue X, Zeng H, Xue L. Integrated molecular characterization of esophageal basaloid squamous cell carcinoma: a subtype with distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. J Pathol 2023; 259:136-148. [PMID: 36371676 DOI: 10.1002/path.6028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Abstract
Esophageal basaloid squamous cell carcinoma (bSCC) is a subtype of squamous cell carcinoma (SCC) with a different behavior and poor prognosis. Exploring bSCC's molecular characteristics and treatment strategies are of great clinical significance. We performed multi-omics analysis of paired bSCC and common SCC (cSCC) using whole exome sequencing and a NanoString nCounter gene expression panel. Immunohistochemistry was used for verification of candidate biomarkers. Different treatment response was analyzed on both patients receiving neoadjuvant treatment and late-stage patients. The common genetically-clonal origin of bSCC and cSCC was confirmed. No significant differences between their genetic alterations or mutation spectra were observed. Mutation signature 15 (associated with defective DNA damage repair) was less prominent, and tumor mutational burden (TMB) was lower in bSCC. bSCC with an RNA expression pattern resembling cSCC had a better survival than other bSCCs. Moreover, bSCC showed significant upregulation of expression of genes associated with angiogenesis response, basement membranes, and epithelial-mesenchymal transition, and downregulation of KRT14 (squamous differentiation) and CCL21 (associated with immune response). Immunohistochemistry for SFRP1 was shown to be highly sensitive and specific for bSCC diagnosis (p < 0.001). In addition, bSCC receiving neoadjuvant immuno-chemotherapy had a worse pathological response than bSCC receiving neoadjuvant chemotherapy (but without statistical significance), even in bSCC positive for PD-L1. Our results demonstrated the molecular characteristics of esophageal bSCC as a subtype with a distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. We provided a useful biomarker, SFRP1, for diagnosis. After outcome analysis for six bSCCs with neoadjuvant immunotherapy treatment and four late-stage bSCCs with immunotherapy, we found that immunotherapy may not be an effective treatment option for most bSCCs. This may also provide a clue for the same subtypes of lung and head and neck cancer. Our study highlighted the heterogeneity among bSCC patients, and might explain the conflicting results of bSCC outcomes in existing studies. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Linxiu Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Fang Fang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Center for Cancer Precision Medicine, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
2
|
A missense variant in SHARPIN mediates Alzheimer's disease-specific brain damages. Transl Psychiatry 2021; 11:590. [PMID: 34785643 PMCID: PMC8595886 DOI: 10.1038/s41398-021-01680-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023] Open
Abstract
Established genetic risk factors for Alzheimer's disease (AD) account for only a portion of AD heritability. The aim of this study was to identify novel associations between genetic variants and AD-specific brain atrophy. We conducted genome-wide association studies for brain magnetic resonance imaging measures of hippocampal volume and entorhinal cortical thickness in 2643 Koreans meeting the clinical criteria for AD (n = 209), mild cognitive impairment (n = 1449) or normal cognition (n = 985). A missense variant, rs77359862 (R274W), in the SHANK-associated RH Domain Interactor (SHARPIN) gene was associated with entorhinal cortical thickness (p = 5.0 × 10-9) and hippocampal volume (p = 5.1 × 10-12). It revealed an increased risk of developing AD in the mediation analyses. This variant was also associated with amyloid-β accumulation (p = 0.03) and measures of memory (p = 1.0 × 10-4) and executive function (p = 0.04). We also found significant association of other SHARPIN variants with hippocampal volume in the Alzheimer's Disease Neuroimaging Initiative (rs3417062, p = 4.1 × 10-6) and AddNeuroMed (rs138412600, p = 5.9 × 10-5) cohorts. Further, molecular dynamics simulations and co-immunoprecipitation indicated that the variant significantly reduced the binding of linear ubiquitination assembly complex proteins, SHPARIN and HOIL-1 Interacting Protein (HOIP), altering the downstream NF-κB signaling pathway. These findings suggest that SHARPIN plays an important role in the pathogenesis of AD.
Collapse
|
3
|
Liu L, Zhou J, Chen CJ, Zhang J, Wen W, Tian J, Zhang Z, Gu Y. GWAS-Based Identification of New Loci for Milk Yield, Fat, and Protein in Holstein Cattle. Animals (Basel) 2020; 10:E2048. [PMID: 33167458 PMCID: PMC7694478 DOI: 10.3390/ani10112048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
High-yield and high-quality of milk are the primary goals of dairy production. Understanding the genetic architecture underlying these milk-related traits is beneficial so that genetic variants can be targeted toward the genetic improvement. In this study, we measured five milk production and quality traits in Holstein cattle population from China. These traits included milk yield, fat, and protein. We used the estimated breeding values as dependent variables to conduct the genome-wide association studies (GWAS). Breeding values were estimated through pedigree relationships by using a linear mixed model. Genotyping was carried out on the individuals with phenotypes by using the Illumina BovineSNP150 BeadChip. The association analyses were conducted by using the fixed and random model Circulating Probability Unification (FarmCPU) method. A total of ten single-nucleotide polymorphisms (SNPs) were detected above the genome-wide significant threshold (p < 4.0 × 10-7), including six located in previously reported quantitative traits locus (QTL) regions. We found eight candidate genes within distances of 120 kb upstream or downstream to the associated SNPs. The study not only identified the effect of DGAT1 gene on milk fat and protein, but also discovered novel genetic loci and candidate genes related to milk traits. These novel genetic loci would be an important basis for molecular breeding in dairy cattle.
Collapse
Affiliation(s)
- Liyuan Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Jinghang Zhou
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Chunpeng James Chen
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
| | - Wan Wen
- Animal Husbandry Workstation, Yinchuan 750001, Ningxia, China; (W.W.); (J.T.)
| | - Jia Tian
- Animal Husbandry Workstation, Yinchuan 750001, Ningxia, China; (W.W.); (J.T.)
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
| |
Collapse
|
4
|
Lee KY, Leung KS, Ma SL, So HC, Huang D, Tang NLS, Wong MH. Genome-Wide Search for SNP Interactions in GWAS Data: Algorithm, Feasibility, Replication Using Schizophrenia Datasets. Front Genet 2020; 11:1003. [PMID: 33133133 PMCID: PMC7505102 DOI: 10.3389/fgene.2020.01003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, we looked for potential gene-gene interaction in susceptibility to schizophrenia by an exhaustive searching for SNP-SNP interactions in 3 GWAS datasets (phs000021:phg000013, phs000021:phg000014, phs000167) using our recently published algorithm. The search space for SNP-SNP interaction was confined to 8 biologically plausible ways of interaction under dominant-dominant or recessive-recessive modes. First, we performed our search of all pair-wise combination of 729,454 SNPs after filtering by SNP genotype quality. All possible pairwise interactions of any 2 SNPs (5 × 1011) were exhausted to search for significant interaction which was defined by p-value of chi-square tests. Nine out the top 10 interactions, protein coding genes were partnered with non-coding RNA (ncRNA) which suggested a new alternative insight into interaction biology other than the frequently sought-after protein-protein interaction. Therefore, we extended to look for replication among the top 10,000 interaction SNP pairs and high proportion of concurrent genes forming the interaction pairs were found. The results indicated that an enrichment of signals over noise was present in the top 10,000 interactions. Then, replications of SNP-SNP interaction were confirmed for 14 SNPs-pairs in both replication datasets. Biological insight was highlighted by a potential binding between FHIT (protein coding gene) and LINC00969 (lncRNA) which showed a replicable interaction between their SNPs. Both of them were reported to have expression in brain. Our study represented an early attempt of exhaustive interaction analysis of GWAS data which also yield replicated interaction and new insight into understanding of genetic interaction in schizophrenia.
Collapse
Affiliation(s)
- Kwan-Yeung Lee
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ling Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon Cheong So
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, The Chinese University of Hong Kong, Hong Kong, China.,Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Nelson Leung-Sang Tang
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Hess R, Henthorn P, Devoto M, Wang F, Feng R. An Exploratory Association Analysis of the Insulin Gene Region With Diabetes Mellitus in Two Dog Breeds. J Hered 2020; 110:793-800. [PMID: 31587057 PMCID: PMC6916661 DOI: 10.1093/jhered/esz059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Samoyeds and Australian Terriers are the 2 dog breeds at highest risk (>10-fold) for diabetes mellitus in the United States. It is unknown if the insulin (INS) gene is involved in the pathophysiology of diabetes in Samoyeds and Australian Terriers. It was hypothesized that the INS gene region provides a common genetic causality for diabetes in Samoyeds and Australian Terriers. We conducted a 2-stage genetic association study involving both breeds. In the discovery stage (Stage 1), Samoyeds with and without diabetes were compared in the frequencies of 447 tagging single-nucleotide polymorphisms (SNPs) within 2.5 megabases (Mb) up- and downstream of the INS gene on the Illumina CanineHD BeadChip. SNPs yielding a P-value < 0.005 were selected for further follow-up. In the validation stage (Stage 2), Australian Terriers with and without diabetes were compared in the SNPs genotyped by the Affymetrix GeneChip Canine Genome 2.0 Array and within 1 Mb up- and downstream of the selected SNPs from Stage 1. Two SNPs that were in high linkage disequilibrium (LD, r2 = 0.7) were selected from Stage 1. In Stage 2, among the 76 SNPs examined, 5 were significantly associated with diabetes after Bonferroni's correction for multiple comparisons. Three of these 5 SNPs were in complete LD (r2 = 1 for all associations) and the 2 remaining SNPs were in moderate LD (r2 = 0.4). In conclusion, an association between the INS gene region and diabetes was suggested in 2 dog breeds of different clades. This region could have importance in diabetes in other breeds or in canine diabetes at large.
Collapse
Affiliation(s)
- Rebecka Hess
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paula Henthorn
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Translational and Precision Medicine, University of Rome Sapienza, Rome, Italy
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Rui Feng
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
6
|
Varón-González C, Navarro N. Epistasis regulates the developmental stability of the mouse craniofacial shape. Heredity (Edinb) 2019; 122:501-512. [PMID: 30209292 PMCID: PMC6461946 DOI: 10.1038/s41437-018-0140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Fluctuating asymmetry is a classic concept linked to organismal development. It has traditionally been used as a measure of developmental instability, which is the inability of an organism to buffer environmental fluctuations during development. Developmental stability has a genetic component that influences the final phenotype of the organism and can lead to congenital disorders. According to alternative hypotheses, this genetic component might be either the result of additive genetic effects or a by-product of developmental gene networks. Here we present a genome-wide association study of the genetic architecture of fluctuating asymmetry of the skull shape in mice. Geometric morphometric methods were applied to quantify fluctuating asymmetry: we estimated fluctuating asymmetry as Mahalanobis distances to the mean asymmetry, correcting first for genetic directional asymmetry. We applied the marginal epistasis test to study epistasis among genomic regions. Results showed no evidence of additive effects but several interacting regions significantly associated with fluctuating asymmetry. Among the candidate genes overlapping these interacting regions we found an over-representation of genes involved in craniofacial development. A gene network is likely to be associated with skull developmental stability, and genes originally described as buffering genes (e.g., Hspa2) might occupy central positions within these networks, where regulatory elements may also play an important role. Our results constitute an important step in the exploration of the molecular roots of developmental stability and the first empirical evidence about its genetic architecture.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - Nicolas Navarro
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.
- EPHE, PSL University, 6 Bd Gabriel, 21000, Dijon, France.
| |
Collapse
|
7
|
VIT-ALK, a Novel Alectinib-Sensitive Fusion Gene in Lung Adenocarcinoma. J Thorac Oncol 2018; 13:e72-e74. [DOI: 10.1016/j.jtho.2017.11.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/21/2022]
|
8
|
Schmitz J, Metz GA, Güntürkün O, Ocklenburg S. Beyond the genome—Towards an epigenetic understanding of handedness ontogenesis. Prog Neurobiol 2017; 159:69-89. [DOI: 10.1016/j.pneurobio.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/18/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022]
|