1
|
Eisenstein T, Furman-Haran E, Tal A. Increased cortical inhibition following brief motor memory reactivation supports reconsolidation and overnight offline learning gains. Proc Natl Acad Sci U S A 2023; 120:e2303985120. [PMID: 38113264 PMCID: PMC10756311 DOI: 10.1073/pnas.2303985120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Practicing motor skills stabilizes and strengthens motor memories by repeatedly reactivating and reconsolidating them. The conventional view, by which a repetitive practice is required for substantially improving skill performance, has been recently challenged by behavioral experiments, in which even brief reactivations of the motor memory have led to significant improvements in skill performance. However, the mechanisms which facilitate brief reactivation-induced skill improvements remain elusive. While initial memory consolidation has been repeatedly associated with increased neural excitation and disinhibition, reconsolidation has been shown to involve a poorly understood mixture of both excitatory and inhibitory alterations. Here, we followed a 3-d reactivation-reconsolidation framework to examine whether the excitatory/inhibitory mechanisms which underlie brief reactivation and repetitive practice differ. Healthy volunteers practiced a motor sequence learning task using either brief reactivation or repetitive practice and were assessed using ultrahigh field (7T) magnetic resonance spectroscopy at the primary motor cortex (M1). We found that increased inhibition (GABA concentrations) and decreased excitation/inhibition (glutamate/GABA ratios) immediately following the brief reactivation were associated with overnight offline performance gains. These gains were on par with those exhibited following repetitive practice, where no correlations with inhibitory or excitatory changes were observed. Our findings suggest that brief reactivation and repetitive practice depend on fundamentally different neural mechanisms and that early inhibition-and not excitation-is particularly important in supporting the learning gains exhibited by brief reactivation.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
2
|
Borges Silva M, Torezan Silingardi Del Claro T, Barbosa Soares A. Induction of Prediction Error During Memory Reconsolidation Strengthens Recent Motor Skills. Neuroscience 2023; 527:84-91. [PMID: 37487822 DOI: 10.1016/j.neuroscience.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
This study investigated strategies based on the reconsolidation process to promote the strengthening effect of human motor memory. The aim of this study was to evaluate the influence of reactivating the memory of a newly acquired motor skill and performing interventions during its reconsolidation process on motor performance. Sixty healthy participants learned a new Sequential Visual Isometric Pinch Task - SVIPT during the first experimental session. In the second experimental session that was held on the same day, 6 h after session 1, the participants were divided into six different groups. In session 2, there were distinctions between the experimental groups concerning two issues: the presence or absence of a formal memory reactivation session characterized by the execution of repetitions of the learned motor task and the execution of different types of interventions after reactivation (training with the original, slightly modified, or moderately modified motor task). All groups performed the third session to retest the learned motor skill, 24 h after session 1. The results showed that using training with moderate task variability during memory reconsolidation provides greater motor skill performance gain when compared to repetitive training of the same learned task. Furthermore, performing a session exclusively dedicated to reactivation with the practice of the originally learned task was not a determining condition for recent motor memory reactivation, but rather the induction of prediction error during the reactivation.
Collapse
Affiliation(s)
| | | | - Alcimar Barbosa Soares
- Biomedical Engineering Laboratory, Faculty of Electrical Engineering, Federal University of Uberlandia, Brazil.
| |
Collapse
|
3
|
Jardine KH, Huff AE, Wideman CE, McGraw SD, Winters BD. The evidence for and against reactivation-induced memory updating in humans and nonhuman animals. Neurosci Biobehav Rev 2022; 136:104598. [PMID: 35247380 DOI: 10.1016/j.neubiorev.2022.104598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Systematic investigation of reactivation-induced memory updating began in the 1960s, and a wave of research in this area followed the seminal articulation of "reconsolidation" theory in the early 2000s. Myriad studies indicate that memory reactivation can cause previously consolidated memories to become labile and sensitive to weakening, strengthening, or other forms of modification. However, from its nascent period to the present, the field has been beset by inconsistencies in researchers' abilities to replicate seemingly established effects. Here we review these many studies, synthesizing the human and nonhuman animal literature, and suggest that these failures-to-replicate reflect a highly complex and delicately balanced memory modification system, the substrates of which must be finely tuned to enable adaptive memory updating while limiting maladaptive, inaccurate modifications. A systematic approach to the entire body of evidence, integrating positive and null findings, will yield a comprehensive understanding of the complex and dynamic nature of long-term memory storage and the potential for harnessing modification processes to treat mental disorders driven by pervasive maladaptive memories.
Collapse
Affiliation(s)
- Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - A Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Simeonov L, Peniket M, Das R. No-think, No drink? Assessing the ability of reconsolidation interference by intentional forgetting to suppress alcohol memories in hazardous drinkers. Behav Res Ther 2022; 152:104055. [DOI: 10.1016/j.brat.2022.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
|
5
|
Gyoda T, Ishida K, Watanabe T, Nojima I. Repetitive training of contralateral limb through reconsolidation strengthens motor skills. Neurosci Lett 2021; 766:136306. [PMID: 34699943 DOI: 10.1016/j.neulet.2021.136306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Consolidated memories become transiently labile after memory reactivation, allowing update through reconsolidation. Although previous reports have indicated that the effects of post-reactivation training depend on the type of practice, it is unclear whether post-reactivation motor skill training of one limb can enhance the performance of the opposite limb. The present study aimed to investigate whether post-reactivation training (performing an isometric pinch force task) under two different training conditions using the left limb would enhance motor skills of the right limb through reconsolidation. Motor skills were measured in 38 healthy right-handed young adults during three sessions (S): S1 (right-hand training), S2 (memory reactivation and left-hand training 6 h after S1), and S3 (right-hand motor skill test 24 h after S1). Participants were assigned to one of three groups according to the task performed during S2: untrained controls (no training), left-hand training (constant force conditions), or left-hand training (variable force conditions). Left-hand training after memory reactivation during S2 significantly enhanced the motor skills of the right hand. Notably, constant training conditions significantly increased performance compared to the control group. These findings suggest that post-reactivation training in one limb effectively enhances motor skills in the opposite limb, and the effects depend on the training strategy, which has important implications for motor rehabilitation.
Collapse
Affiliation(s)
- Tomoya Gyoda
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kazuto Ishida
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ippei Nojima
- Division of Physical Therapy, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan.
| |
Collapse
|
6
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
7
|
Blais M, Jucla M, Maziero S, Albaret JM, Chaix Y, Tallet J. The Differential Effects of Auditory and Visual Stimuli on Learning, Retention and Reactivation of a Perceptual-Motor Temporal Sequence in Children With Developmental Coordination Disorder. Front Hum Neurosci 2021; 15:616795. [PMID: 33867955 PMCID: PMC8044544 DOI: 10.3389/fnhum.2021.616795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigates the procedural learning, retention, and reactivation of temporal sensorimotor sequences in children with and without developmental coordination disorder (DCD). Twenty typically-developing (TD) children and 12 children with DCD took part in this study. The children were required to tap on a keyboard, synchronizing with auditory or visual stimuli presented as an isochronous temporal sequence, and practice non-isochronous temporal sequences to memorize them. Immediate and delayed retention of the audio-motor and visuo-motor non-isochronous sequences were tested by removing auditory or visual stimuli immediately after practice and after a delay of 2 h. A reactivation test involved reintroducing the auditory and visual stimuli after the delayed recall. Data were computed via circular analyses to obtain asynchrony, the stability of synchronization and errors (i.e., the number of supplementary taps). Firstly, an overall deficit in synchronization with both auditory and visual isochronous stimuli was observed in DCD children compared to TD children. During practice, further improvements (decrease in asynchrony and increase in stability) were found for the audio-motor non-isochronous sequence compared to the visuo-motor non-isochronous sequence in both TD children and children with DCD. However, a drastic increase in errors occurred in children with DCD during immediate retention as soon as the auditory stimuli were removed. Reintroducing auditory stimuli decreased errors in the audio-motor sequence for children with DCD. Such changes were not seen for the visuo-motor non-isochronous sequence, which was equally learned, retained and reactivated in DCD and TD children. All these results suggest that TD children benefit from both auditory and visual stimuli to memorize the sequence, whereas children with DCD seem to present a deficit in integrating an audio-motor sequence in their memory. The immediate effect of reactivation suggests a specific dependency on auditory information in DCD. Contrary to the audio-motor sequence, the visuo-motor sequence was both learned and retained in children with DCD. This suggests that visual stimuli could be the best information for memorizing a temporal sequence in DCD. All these results are discussed in terms of a specific audio-motor coupling deficit in DCD.
Collapse
Affiliation(s)
- Mélody Blais
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Mélanie Jucla
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Stéphanie Maziero
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Jean-Michel Albaret
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Hôpital des Enfants, Centre Hospitalier Universitaire de Toulouse, CHU Purpan, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
8
|
Boddez Y, Moors A, Mertens G, De Houwer J. Tackling fear: Beyond associative memory activation as the only determinant of fear responding. Neurosci Biobehav Rev 2020; 112:410-419. [DOI: 10.1016/j.neubiorev.2020.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
|
9
|
Balbinot G, Schuch CP. Compensatory Relearning Following Stroke: Cellular and Plasticity Mechanisms in Rodents. Front Neurosci 2019; 12:1023. [PMID: 30766468 PMCID: PMC6365459 DOI: 10.3389/fnins.2018.01023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
von Monakow’s theory of diaschisis states the functional ‘standstill’ of intact brain regions that are remote from a damaged area, often implied in recovery of function. Accordingly, neural plasticity and activity patterns related to recovery are also occurring at the same regions. Recovery relies on plasticity in the periinfarct and homotopic contralesional regions and involves relearning to perform movements. Seeking evidence for a relearning mechanism following stroke, we found that rodents display many features that resemble classical learning and memory mechanisms. Compensatory relearning is likely to be accompanied by gradual shaping of these regions and pathways, with participating neurons progressively adapting cortico-striato-thalamic activity and synaptic strengths at different cortico-thalamic loops – adapting function relayed by the striatum. Motor cortex functional maps are progressively reinforced and shaped by these loops as the striatum searches for different functional actions. Several cortical and striatal cellular mechanisms that influence motor learning may also influence post-stroke compensatory relearning. Future research should focus on how different neuromodulatory systems could act before, during or after rehabilitation to improve stroke recovery.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarissa Pedrini Schuch
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
10
|
Silva MB, Soares AB. Reconsolidation of human motor memory: From boundary conditions to behavioral interventions-How far are we from clinical applications? Behav Brain Res 2018; 353:83-90. [PMID: 29983391 DOI: 10.1016/j.bbr.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/12/2023]
Abstract
The memory reconsolidation hypothesis states that a previously consolidated and stable memory can return to a temporary labile state after retrieved, requiring a new stabilization process. During the labile period, the memory trace is vulnerable to modification, which provides a potential therapeutic opportunity to weaken, updated or strengthen that memory. As such, reconsolidation has been the subject of numerous studies in different domains of human memory that seek strategies to treat post-traumatic disorders and erase or modify pathological memories. A few studies have also investigated the impairment effects of behavioral interferences on motor memory. However, very little has been researched and written about the possibility of using reconsolidation to enhance motor skill learning. Here, we present a critical review of the literature and trace possible applications for human motor memory reconsolidation. We discuss the boundary conditions and the mechanisms to trigger the reconsolidation process, as well as the effects of behavioral interventions in modifying the performance of motor skills.
Collapse
Affiliation(s)
- Maristella Borges Silva
- Biomedical Engineering Laboratory, Faculty of Electrical Engineering, Federal University of Uberlandia, Brazil
| | - Alcimar Barbosa Soares
- Biomedical Engineering Laboratory, Faculty of Electrical Engineering, Federal University of Uberlandia, Brazil.
| |
Collapse
|
11
|
Maeda RS, McGee SE, Marigold DS. Long-term retention and reconsolidation of a visuomotor memory. Neurobiol Learn Mem 2018; 155:313-321. [DOI: 10.1016/j.nlm.2018.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
|
12
|
|
13
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
14
|
Rodríguez-Durán LF, Martínez-Moreno A, Escobar ML. Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD. Neurobiol Learn Mem 2017; 142:85-90. [DOI: 10.1016/j.nlm.2016.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/21/2023]
|