1
|
Hssain-Khalladi S, Giron A, Huneau C, Gitton C, Schwartz D, George N, Le Van Quyen M, Marrelec G, Marchand-Pauvert V. Further characterisation of late somatosensory evoked potentials using electroencephalogram and magnetoencephalogram source imaging. Eur J Neurosci 2024; 60:3772-3794. [PMID: 38726801 DOI: 10.1111/ejn.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024]
Abstract
Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.
Collapse
Affiliation(s)
- Sahar Hssain-Khalladi
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
- Sorbonne Université, Laboratoire d'Excellence SMART, Paris, France
| | - Alain Giron
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Clément Huneau
- Université de Nantes, CNRS, Laboratoire des Sciences du Numérique de Nantes, LS2N, Nantes, France
| | - Christophe Gitton
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Denis Schwartz
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Nathalie George
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Michel Le Van Quyen
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Guillaume Marrelec
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | | |
Collapse
|
2
|
Mirando M, Penati R, Godi M, Giardini M, Nardone A. The Effect of Upright Stance and Vision on a Cognitive Task in Elderly Subjects and Patients with Parkinson's Disease. Brain Sci 2024; 14:305. [PMID: 38671957 PMCID: PMC11047827 DOI: 10.3390/brainsci14040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Standing compared to sitting enhances cognitive performance in healthy subjects. The effect of stance on cognitive performance has been addressed here in patients with Parkinson's disease (PwPD). We hypothesized that a simple cognitive task would be less enhanced in PwPD by standing with respect to sitting, because of a larger cognitive effort for maintenance of standing posture than in healthy subjects. We recruited 40 subjects (20 PwPD and 20 age-matched healthy subjects, HE). Each participant performed an arithmetic task (backward counting aloud by 7) in two postural states, sitting and standing, with eyes open (EO) and with eyes closed (EC). All trials lasted 60 s and were randomized across subjects and conditions. The number of correct subtractions per trial was an index of counting efficiency and the ratio of correct subtractions to total subtractions was an index of accuracy. All conditions collapsed, the efficiency of the cognitive task was significantly lower in PwPD than HE, whilst accuracy was affected to a lower extent. Efficiency significantly improved from sitting to standing in HE under both visual conditions whilst only with EO in PwPD. Accuracy was not affected by posture or vision in either group. We suggest that standing, compared to sitting, increases arousal, thus improving the cognitive performance in HE. Conversely, in PwPD this improvement was present only with vision, possibly due to their greater balance impairment with EC consuming an excess of attentional resources. These findings have implications for balance control and the risk of falling in PwPD in the absence of visual cues.
Collapse
Affiliation(s)
- Marta Mirando
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.P.)
| | - Rachele Penati
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.P.)
| | - Marco Godi
- Physical Medicine and Rehabilitation Unit of Veruno Institute, Istituti Clinici Scientifici Maugeri IRCCS, 28010 Veruno, Italy; (M.G.); (M.G.)
| | - Marica Giardini
- Physical Medicine and Rehabilitation Unit of Veruno Institute, Istituti Clinici Scientifici Maugeri IRCCS, 28010 Veruno, Italy; (M.G.); (M.G.)
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.P.)
- Centro Studi Attività Motorie and Neurorehabilitation and Spinal Units of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
3
|
Fazzari C, Macchi R, Kunimasa Y, Ressam C, Casanova R, Chavet P, Nicol C. Muscle synergies inherent in simulated hypogravity running reveal flexible but not unconstrained locomotor control. Sci Rep 2024; 14:2707. [PMID: 38302569 PMCID: PMC10834966 DOI: 10.1038/s41598-023-50076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
With human space exploration back in the spotlight, recent studies have investigated the neuromuscular adjustments to simulated hypogravity running. They have examined the activity of individual muscles, whereas the central nervous system may rather activate groups of functionally related muscles, known as muscle synergies. To understand how locomotor control adjusts to simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity running: The reduced mechanical constraints allowed for a more flexible locomotor control, which correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor primitives and a higher contribution of the hamstring muscles during the stance phase. These results are a first step towards improving astronaut training protocols.
Collapse
Affiliation(s)
| | - Robin Macchi
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | | | - Camélia Ressam
- NeuroSpin, UMR CEA/CNRS 9027, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
4
|
Malaya CA, Parikh PJ, Smith DL, Riaz A, Chandrasekaran S, Layne CS. Effects of simulated hypo-gravity on lower limb kinematic and electromyographic variables during anti-gravitational treadmill walking. Front Physiol 2023; 14:1141015. [PMID: 37362436 PMCID: PMC10285399 DOI: 10.3389/fphys.2023.1141015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: This study investigated kinematic and EMG changes in gait across simulated gravitational unloading levels between 100% and 20% of normal body weight. This study sought to identify if each level of unloading elicited consistent changes-particular to that percentage of normal body weight-or if the changes seen with unloading could be influenced by the previous level(s) of unloading. Methods: 15 healthy adult participants (26.3 ± 2.5 years; 53% female) walked in an Alter-G anti-gravity treadmill unloading system (mean speed: 1.49 ± 0.37 mph) for 1 min each at 100%, 80%, 60%, 40% and 20% of normal body weight, before loading back to 100% in reverse order. Lower-body kinematic data were captured by inertial measurement units, and EMG data were collected from the rectus femoris, biceps femoris, medial gastrocnemius, and anterior tibialis. Data were compared across like levels of load using repeated measures ANOVA and statistical parametric mapping. Difference waveforms for adjacent levels were created to examine the rate of change between different unloading levels. Results: This study found hip, knee, and ankle kinematics as well as activity in the rectus femoris, and medial gastrocnemius were significantly different at the same level of unloading, having arrived from a higher, or lower level of unloading. There were no significant changes in the kinematic difference waveforms, however the waveform representing the change in EMG between 100% and 80% load was significantly different from all other levels. Discussion: This study found that body weight unloading from 100% to 20% elicited distinct responses in the medial gastrocnemius, as well as partly in the rectus femoris. Hip, knee, and ankle kinematics were also affected differentially by loading and unloading, especially at 40% of normal body weight. These findings suggest the previous level of gravitational load is an important factor to consider in determining kinematic and EMG responses to the current level during loading and unloading below standard g. Similarly, the rate of change in kinematics from 100% to 20% appears to be linear, while the rate of change in EMG was non-linear. This is of particular interest, as it suggests that kinematic and EMG measures decouple with unloading and may react to unloading uniquely.
Collapse
Affiliation(s)
- Christopher A. Malaya
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Grail Laboratory, Parker University, Dallas, TX, United States
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Dean L. Smith
- Nutrition and Health, Department of Kinesiology, Miami University, Oxford, OH, United States
| | - Arshia Riaz
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Subhalakshmi Chandrasekaran
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles S. Layne
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| |
Collapse
|
5
|
Fabre M, Sainton P, Sutter C, Mouchnino L, Chavet P. Partial Unweighting in Obese Persons Enhances Tactile Transmission From the Periphery to Cortical Areas: Impact on Postural Adjustments. Front Hum Neurosci 2022; 16:782028. [PMID: 35774481 PMCID: PMC9238273 DOI: 10.3389/fnhum.2022.782028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Tactile plantar information is known to play an important role in balance maintenance and to contribute to the setting of anticipatory postural adjustments (APAs) prior to stepping. Previous studies have suggested that somatosensory processes do not function optimally for obese individuals due to the increased pressure of the plantar sole resulting in balance issues. Here, we investigated whether decreasing the compression of the mechanoreceptors by unweighting the plantar sole would enhance tactile sensory processes leading to an increased stability and an accurate setting of the APAs in obese individuals. More specifically, we tested the hypothesis that the somatosensory cortex response to electric stimulation (SEP) of the plantar sole in standing obese persons will be greater with reduced body weight than with their effective weight. The level of unweighting was calculated for each participant to correspond to a healthy body mass index. We showed an increase SEP amplitude in the unweighted condition compared to the effective body weight for all participants. This increase can be explained by the reduction of weight itself but also by the modified distribution of the pressure exerted onto the foot sole. Indeed, in the unweighted condition, the vertical ground reaction forces are evenly distributed over the surface of the foot. This suggests that decreasing and equalizing the pressure applied on the plantar mechanoreceptors results in an increase in somatosensory transmission and sensory processes for obese persons when unweighted. These sensory processes are crucial prior to step initiation and for setting the anticipatory postural adjustments (i.e., thrust). These cortical changes could have contributed to the observed changes in the spatiotemporal characteristics of the thrust prior to step initiation.
Collapse
Affiliation(s)
- Marie Fabre
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Patrick Sainton
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, Marseille, France
| | - Chloé Sutter
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
- Institut Universitaire de France, Paris, France
| | - Pascale Chavet
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, Marseille, France
- *Correspondence: Pascale Chavet
| |
Collapse
|